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Robust Fréchet mean estimations in NPC spaces
Covariance estimation

5 Numerical experiment

6 Conclusions

Kim, Park, Bhattacharya (UBC, TAMU, TAMU) Robust estimation in metric spaces 2 / 38



Introducion
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Main question

Main question: Is there a ‘robust’ estimator that works for general ‘parameter spaces’?

Two aspects:
1 Robustness: e.g. median is said to be more robust than mean in R (but in what criterion?).
2 Parameter space: e.g. means of vectors ∈ Rd ; covariance matrices ∈ Symmetric Positive Definite

(SPD) matrices.

Robust methods for Euclidean spaces do not extend directly to general parameter spaces.
E.g., what does it mean to take ‘median’ of vectors & covariance matrices?

Our claim: ‘Certain robustification method’ (Fréchet median) can be extended to some
general metric spaces (CAT(κ) spaces).
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Robust estimation

Robust estimations
There are many notions of robustness: e.g. breakdown points, influence function, ...
In this work: robustness will stand for tail concentrations i.e., the estimator is more robust if the
estimator’s distribution has a lighter tail.
Examples in R:

If Xi
i.i.d∼ N(E(X ), 1), then P(

∣∣∣X − E(X )
∣∣∣ ≥ t) ≤ e−cnt2 (Exact calculation or Bernstein).

If Yi
i.i.d∼ any distribution with a second moment, then P(

∣∣∣Y − E(Y )
∣∣∣ ≥ t) ≤ Var(Y )

nt2
(Chebyshev).

The first example concentrates exponentially to the target quantity w.r.t. n; the second example concentrates
polynomially w.r.t. n. The first estimator is more robust.

Why robustness?
We frequently encounter heavy-tail distributions.
Many standard estimators fail to be robust under heavy-tail setting, e.g., sample mean (see the
above example).
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Inferences beyond Euclidean spaces

We often encounter parameters that are not in Rd .

Examples:
Infinite dimensional spaces: Hilbert spaces, Banach spaces - nonparametric regressions, functional
data analysis.
Riemannian manifolds: Hypershperes - spatial statistics, SPD matrices (under some metrics) -
covariance estimation problems.
Discrete spaces: Trees, graphs - Hierarchical models, Graphical models, network data analysis.

⇒ Whether existing methods can be extended to such domain is an important question.
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Preliminaries
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Preliminaries: CAT(κ) spaces I

CAT(κ) space: a very general metric space equipped with the minimal essential geometric
structure for our purpose.

Informal statement: CAT(κ) space is a metric space (X , d) whose curvatures are upper bounded by
κ.
What does curvature mean here?

How curved the space is determined by comparing a triangle in X with a triangle in 2-dimensional κ-curved
spaces := M2

κ having same side lengths.

M2
κ for κ < 0 is a 1/

√
|κ| scaled hyperbolic space (H2/

√
|κ|), M2

0 is the Euclidean plane, and M2
κ for

κ > 0 is the 2-dimensional sphere of radius 1/
√
κ (S2/

√
κ). Here, the model space is κ-curved in a Gaussian

curvature sense.
CAT(κ): Any sufficiently small triangle in X is ‘thinner’ than its comparison triangle in the 2-dimensional

model space M2
κ. See Figure 1.

This notion of curvature is called Alexandrov curvature (generalization of a sectional curvature in Riemannian
geometry).

Figure 1: Triangle comparison: A fatter triangle have larger angles than a thinner triangle.
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Preliminaries: CAT(κ) spaces II

Examples of CAT(κ) spaces:

Riemannian manifolds whose sectional curvatures are upper bounded by κ: Euclidean spaces,
hyperspheres, hyperbolic spaces, many statistical manifolds in information geometry, SPD spaces
with appropriate metrics.

Infinite dimensional Hilbert space.

Spaces of phylogenetic trees.

Metric graphs and trees: Metric graphs with cycles of length less than 2π is CAT(1). Metric trees
are CAT(0).

CAT(0) spaces are often called Non-Postiviely-Curved (NPC) spaces.
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Preliminaries: Fréchet mean and median I

Frećhet mean (median): Generalizations of Euclidean mean (resp. median).

Analogy from Euclidean:

E(X ) = argminY EX ∥X − Y∥2.
med(X ) ∈ argminY EX ∥X − Y∥.

Notations:

(X , d): a metric space.
Pp(X ): a set of Borel probability measures in X with a finite pth moment, i.e.,∫
X dp(x, y)dP(y) < ∞ for some x ∈ X .

Definition

For P ∈ Pp(X ), suppose there exists an element x∗ ∈ X such that

x∗ ∈ argmin
x∈X

∫
X

dp(x , y)dP(y).

Such x∗ with p = 2 (p = 1) is called a Fréchet mean (resp. median) of P.
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Preliminaries: Fréchet mean and median II

Some literatures uses the term barycenter (resp. geometric median) for Fréchet mean (resp.
median).

Existence and uniqueness of Fréchet mean and median:
In NPC spaces: Fréchet mean (resp. median) globally exists for all P with a finite second (resp.
first) moment (Ba4).

Fréchet mean is unique.

Fréchet median may not be unique, but they form a single geodesic segment (Analogy: Think of median in R).

κ > 0: Some additional conditions are required (e.g. bounded support, ...) (Yok17).

Remark: Fréchet mean (median) is not the only generalization of Euclidean mean (resp.
median) in metric spaces: inductive mean and convex mean (Stu99),
tournament-based-median (LM19), Tukey’s depth based median (DLP21), ...
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Preliminaries: Median-of-means

Median-of-means (MoM): an estimator achieving exponential concentration under only
moment conditions.

1 Split n data into k disjoint blocks.
2 Obtain k sample means from each block.
3 Take a median of k means; median-of-means.

MoM: Concentrate to mean exponentially (more robust than sample mean).

Fréchet Median-of-estimators (FMoE): taking a Fréchet median of any weakly (polynomially)
concentrating estimators induces a strongly (exponentially) concentrating estimator when a
parameter is in Banach spaces (Min15) and some Riemannian manifolds (LLSD20).

Our finding: FMoE can be generalized up to CAT(κ)!

Remark: FMoE is not the only option to obtain the robust estimator: trimmed mean
(LM21), different notions of a median (LM19; YP23), ...
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Main Theorems
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Geometric discrepency of Fréchet median

The exponential concentration of Fréchet median is a direct consequence of the geometric
property of the Fréchet median.

Lemma (Geometric discrepency near the Fréchet median)

Let (X , d) be a CAT(κ) space, and fix x1, . . . , xk ∈ X . Denote x∗ := med (x1, . . . , xk ). Fix
α ∈ (0, 0.5) and write Cα = (1− α)(1− 2α)−1/2. Suppose either (a) or (b) holds:

(a) For κ ≤ 0, assume there exists z ∈ X such that d(x∗, z) > Cαr for some r > 0.

(b) For κ > 0, write Dκ = π/
√
κ. Assume x∗ exists, xj ∈ B(x∗,Dκ/2), and there exists z ∈ X

such that π
2
Cαr < d(x∗, z) ≤ Dκ/2 for some 0 < r < Dκ/(Cαπ).

Under (a) or (b), there exists a subset J ⊆ {1, . . . , k} of the cardinality |J| > αk such that for all
j ∈ J, d(xj , z) > r .
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Remarks on Lemma

Interpretations of Lemma:
If a point z is far away from a Fréchet median x∗, then z also has to be far away from the bulk of
the points, xj ’s.
This property of median is sometimes referred to majority voting.

κ > 0 case requires some additional conditions, due to the unfavorable behavior of Fréchet
median in positively-curved spaces.

Proof idea:
CAT(κ) structure allow us to compare the triangle of X (precisely, △xjx

∗z) to the triangle in the

model space M2
κ (△x̃j x̃

∗ z̃).

Since M2
κ is a 2-dimensional surface, there are direct calculation rules for some geometric quantities

(e.g. cos(∠x̃j x̃
∗ z̃)).

One will assume the claim is false, and show in such case x∗ cannot be a Fréchet median (minima of

the sum of the distance) using calculation rules in M2
κ ⇒ contradiction!
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Boosting weak estimators

Theorem

Suppose the parameter space Θ is CAT(κ) space. Let θ ∈ Θ be a parameter of interest and θ̂j ,

j = 1, . . . , k be independent estimators of θ. Let θ̂FMoE := med
(
θ̂1, . . . , θ̂k

)
be a ‘Fréchet

median of estimators’.
Fix α ∈ (0, 1/2) and p ∈ (0, α). Write ψ(α, p) := (1− α) log 1−α

1−p
+ α log α

p
and set Cα same as

in Lemma.

(a) For κ ≤ 0, suppose there exists ϵ > 0 such that P
(
d(θ̂j , θ) > ϵ

)
≤ p for all j = 1, . . . , k.

Then,

P
[
d(θ̂FMoE , θ) > Cαϵ

]
≤ exp (−kψ(α, p)) .

(b) For κ > 0, suppose there exists ϵ ∈ (0,Dκ/(πCα)) such that P
(
d(θ̂j , θ) > ϵ

)
≤ p for all

j = 1, . . . , k. Assume θ̂FMoE exists, θ̂j ∈ B(θ̂FMoE ,Dκ/2), and θ̂FMoE ∈ B(θ,Dκ/2) almost
surely. Then,

P
[
d(θ̂FMoE , θ) >

πCαϵ

2

]
≤ exp (−kψ(α, p)) .
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Remarks on Theorem

κ > 0 case requires additional conditions, which are from the condition in previous Lemma.

The proof is direct once we have Lemma - skecth for κ < 0:

The event
{
d(θ̂FMoE , θ) > Cαϵ

}
⊆

{∑k
j=1 1

{
d(θ̂j ,θ)>ϵ

} > αk

}
from Lemma.

The probability of the latter event can be bounded by exp(−kψ(α, p)) using Chernoff bound on
Binomial random variables.

This CAT(κ) extension covers the almost all the previous analysis on FMoE, except Banach
space (Min15).

Main takeaway: Whenever an estimator concentrates weakly (polynomially), applying FMoE
will make an estimator concentrating strongly (exponentially) ⇒ robust estimation!
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Algorithmic perspective

One can conduct the same procedure as in MoM to obtain FMoE.

FMoE is nearly fully implementable:
Computation of Fréchet median is always possible in NPC spaces (Ba4).
If κ > 0, no universal method for Fréchet median; algorithms tailored to specific domains exist (e.g.
Riemannian manifolds).
∴ in many applications, if you can compute the original estimator, you can compute FMoE.

Time complexity of FMoE ≈ the original estimator.
If the original estimator has a time complexity O(nα) and the Fréchet median has a time complexity

O(nβ), then FMoE’s time complexity will be O(nαk1−α + kβ).
If k = O(1) then it matches to O(nα).
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Statistical Applications
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1. Robust Fréchet mean estimations in NPC spaces
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Mean estimations in NPC spaces I

Empirical Fréchet mean in NPC spaces concentrates weakly under mild moment assumptions.

Throughout this section, we set (X , d) to be an NPC space whose Alexandrov curvatures

−∞ < curv(X ) ≤ 0, and Xi
i.i.d∼ P ∈ P2(X ) with σ2 being a second moment of P.

Proposition ((GPRS19))

Let x̂ be an empirical Fréchet mean. Then,

E
[
d2(x̂ , x∗)

]
≤
σ2

n
.

Furthermore, for any ϵ > 0

P [d(x̂ , x∗) > ϵ] ≤
σ2

nϵ2
.

Remark: One cannot guarantee such polynomial concentration under positive curvatures
without additional assumptions (e.g., extendible geodesic condition (GPRS19)[Theorem
4.2]).
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Mean estimations in NPC spaces II

For exponential concentration of the empirical Fréchet mean, one requires additional
sub-Gaussian type assumptions.

Proposition ((BS24))

Suppose P satisfies the following sub-Gaussian type assumption, i.e.,

sup
f∈F

EX∼P

[
eλ(f (X )−E[f (X )])

]
≤ e

λ2K2

2 ∀λ > 0

where F = {f : X → R | f is a 1-Lipschitz function}. Then,

P

[
d(x̂ , x∗) ≥

σ
√
n
+ K

√
log(1/δ)

n

]
≤ δ.

Remark: This notion of sub-Gaussian is stronger than usual sub-Gaussian in Rd

(f (X ) = ⟨vf ,X ⟩ for vf ∈ Sd−1).
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FMoM in NPC spaces

FMoM concentrates exponentially to population Fréchet mean in the absence of
sub-Gaussian type assumptions, unlike empirical Fréchet mean.

Theorem

Fix δ > 0. Let x̂FMoM be a Fréchet median-of-means of x̂j ’s where x̂ is empirical Fréchet mean.
Set k = ⌊log(1/δ)/ψ(7/18, 1/10)⌋+ 1. Then

P

d(x̂FMoM , x
∗) ≥ 11

√
σ2 log(1.4/δ)

n

 ≤ δ.

Proof technique (standard):

P [d(x̂j , x
∗) ≥ ϵ] ≤ 2kσ2

nϵ2
:= p.

Apply our main Theorem.
Optimize the bound w.r.t. p and α.
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Covariance estimation problem
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Motivations

A difficulty in the sample covariance matrix estimation problem: SPD matrix constraint.

Matrix norm based approaches may potentially violate this constraint.
E.g., A Fréchet median of SPD matrices w.r.t. a matrix norm ⇒ Is it SPD? Non-trivial...

Some metrics take into account the SPD constraint:

dAI (A,B) := ∥ logA−1/2BA−1/2∥F (Affine-Invariant metric),

d2
BW (A,B) := tr(A) + tr(B)− 2 tr(A1/2BA1/2)1/2 (Bures-Wasserstein metric).

(SPD, dAI ): NPC space.

(SPD, dBW ): CAT(κ) space for some κ > 0 under some additional assumptions.

⇒ Their Fréchet medians are still SPD!
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Robust estimation of covariance

One can use FMoM proposed earlier for the robust estimator of the covariance matrix.

However, sample covariance matrix Σ̂ =
∑n

i=1 XiX
T
i /n is computationally favorable than

Fréchet mean w.r.t. dAI , dBW .

Idea: Use Σ̂ as an original estimator and take a Fréchet median.

As long as Σ̂ concentrates polynomially w.r.t. desired metric, our method is applicable.
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Polynomial concentration of Σ̂

Proposition (Polynomial tail bound for covariance matrix estimator)

Let Xi
i.i.d∼ P ∈ P4(Rd ) a distribution with mean 0 and covariance matrix Σ with a fixed

dimension d. Let Σ̂ =
∑

i XiX
T
i /n be a sample covariance estimator. Then, writing λmin the

smallest eigenvalue of Σ,

P
[
dAI

(
Σ̂,Σ

)
≥ ϵ
]
≤

Cd4

nλ2min

(
1− exp

(
− ϵ√

d

))2
for some constant C > 0 only depends on the moments of P.
For dBW , in addition assume both Σ̂ and Σ have the eigenvalue lower bound by λ0 > 0. Then

P
[
dBW

(
Σ̂,Σ

)
≥ ϵ
]
≤

Cd4

4nλ0ϵ2

with the same C in the above.
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FMoE of Σ̂

Since we have a polynomial concentration w.r.t. both metrics, the same technique in the
previous section yields the exponential concentration of FMoE.

Theorem (Exponential concentration of median of sample covariance matrices)

Under the same setting in Proposition 4.4, we set Σ̂FMoE with the original estimator being a
sample covariance matrix and the metric d being either dAI or dBW . Set
k = ⌊log(1/δ)/ψ(0.4, 0.1)⌋+ 1.

(a) For d = dAI , whenever n ≥ 2kCd4/λ2min, we have

P
[
dAI (Σ̂FMoE ,Σ) ≥ −1.3

√
d log

(
1−

9d2

λmin

√
C log(1.4/δ)

n

)]
≤ δ.

(b) For d = dBW , again assume both Σ̂ and Σ have the eigenvalue lower bound by λ0 > 0. In

addition assume conditions in Theorem 3.2(b) holds with κ = 3/(2λ20), θ = Σ, and θ̂j = Σ̂j .
Then, whenever n > 6λ0kCd4, we have

P

dBW (Σ̂FMoE ,Σ) > 12d2

√
C log(1.4/δ)

2nλ0

 ≤ δ.
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Numerical experiments
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Experiment setting

Task: Covariance estimation problem.

Dimension d = 10, number of samples n = 10000, number of blocks k = 5

Xi ∼ t2.5(0,Σ) for randomly generated Σ with fixing λj = j for j = 1, . . . , 10.
Heavy tail distribution with the variance being 5Σ.

More experiments in our paper!
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Experiment results I

Table 1: Mean squared error and 95% confidence interval comparisons from 1000 simulations.

Task Ed2(θ̂, θ) Ed2(θ̂FMoE , θ) d(θ̂, θ) CI d(θ̂FMoE , θ) CI
Covariance (dAI ) 0.6057 0.2931 [0.4266, 1.6865] [0.4132, 0.6792]
Covariance (dBW ) 8.3281 1.7360 [0.9936, 5.8796] [0.9443, 1.7409]
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Experiment results II

Figure 2: Histogram, mean, and 95% confidence interval for each experiment from 1000 simulations. Left:
(SPD, dAI ). Right: (SPD, dBW ). All results indicate our method achieves much stronger concentration as well
as much smaller mean squared errors.
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Conclusions
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Summary

Taking Fréchet median of estimators makes more robust estimator.

This phenomenon can be extended up to general metric spaces as long as it has a
(Alexandrov) curvature upper bound.

This is due to the geometric property (majority voting) of Fréchet median.

Our Fréchet median based approach is widely applicable, as well as nearly fully
implementable with almost same computational costs.
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Limitations

Possible further generalizations: Can we make an analysis that even covers Banach space
case (Min15)?

Overcoming the curvature upper bound condition: There are some spaces that are of interest
but do not belong to CAT(κ), e.g., Wasserstein space.

Adaptivity: Our bound relies on population quantities, which is not accessible in practice.
This is a problem when we want to construct a sample confidence interval. Can we make the
estimator adaptive?
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Thank You For Your Attention!
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