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In

Simple Example

@ Question: Find parameters (1, 0?) for Y ~ N(u,o?) satisfying
P(-5<Y <2)=0.5

@ Total parameter space: R x RT
@ Possible parameter space w.r.t. constraint: 1-dimensional curve (figure)

@ Idea: Space of solutions forms a manifold (Solution Manifold)

T4
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The goal of the paper

@ What is the property of solution manifold?
@ How to find a Solution Manifold numerically?

@ Concept of Solution Manifold applied to actual problems?
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Intro
Notations

e ¥ :R? — R® Target function.
o My :={x | ¥(z) = 0} Solution Manifold given ¥. Often denoted just M.

o M := Mg, An approximation (estimation) of M, if U is an approximation
(estimation) of U.

a7 U, ( i
o [|W||Z, = sup, max; max;, .., |G B, |||z, , = max;—o,_s |[ ¥4,

o Gy(x) =VU(z), Hy(x) = VQ\IJ(J:I),.
o M@r:={z|dx,M)<r}
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Flow of the presentation

o Properties of Solution Manifold: lemma 1 — Assumptions, lemma 2 —
Smoothness Thm (Thm 3) — Stability Thm (Thm 4)

o Numerically obtaining Solution Manifold: Conv in grad flow (Thm 6) —
Conv in GD (Thm 8) — MCGD algorithm (Algo 1)

o Statistical Applications of Solution Manifold: Theorem 7 — pushforward
measure on M — Bayesian Prior and Posterior sampling from Solution
Manifold (Algo 3)

Jiyoung Park (wldyddl5 tamu.edu) exas A&M University


mailto:wldyddl5510@tamu.edu

Intro
Main results

@ Properties of solution manifold
e Smoothness theorem: Smoothness of ¥ = Smoothness(?) of Mg. (Lem 1
and Thm 3).
e Stability theorem: d(@, v)—0= M — M w.r.t. the Hausdorff distance
(Thm 4).
@ Numerically finding Solution Manifold
e Convergence of a gradient descent algorithm: With good initialization and
proper update step, Gradient Descent algorithm can obtain points in My.
(Thm 6, Thm 8)
e Monte Carlo gradient descent algorithm: Generating point clouds over M,
using only ¥ and its gradient. (Algorithm 1)
@ Statistical Applications of Solution Manifold
o Local center manifold theorem: For z € M, A(z) := {z | x converges to z}
forms an s-dimensional manifold. (Thm 7).
e Approximated manifold posterior algorithm: A Bayesian procedure that
approximates the posterior distribution on a manifold. (Algorithm 3)
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Properties of Solution Manifold sumptions Smoothness Stability Thm

Section 2

© Properties of Solution Manifold
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Assumptions

e Note 1 Vz € M, rank(VU(x)) = s = M forms a (d — s) dimensional
manifold. (.- Implicit function theorem)
o Assumptions

o F1 3|[¥[|5, 5 < o0

o F2 3 Ao,(So,Co > 0 s.t.
o Va € M ® 60, Amin(Gw ()G (2)T) = Amin>0(Gw ()" Gy (z)) > Ag-
o Vo & M @ do, ||¥(x)||max > co.

o F1 is related with smoothness (in fact, differentiability) of W.

o F2 is related with curvature information around M. (.- lemma 1)

e Lemma 1 Vz € M, Span(Row(Gg(x))) = Normal(M (x)).
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Properties o ution Manifold Assumptio oothness Thm Stability Thm

Assumptions: Examples

@ Are these assumptions reasonable?
@ Rephrase of F2 in specific problems

e mode estimation: ¥ = Vp(z) = F2 &~ pdf: Morse function.
e Solving MLE: ¥ = VI(#) = F2 = positive definite fisher information.
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In general, Smoothness of ¥ £ smoothness of M,
but under above assumptions, Smoothness of ¥ = positive reach.

Definition Reach
Reach(M) := inf{r > 0|Vz € M @& r, x has a unique projection onto M}

Smoothness Theorem Under above assumptions,

> min(% . 2o

reach(M) > min(%, H‘I’H;‘z)

Remark 1 %“ is related with folding, and W is related with curvature.
00,2

Note Relationship with Smoothness of Manifold?

o Positive reach = C*! manifold [A. Lytchak, 2005]

e C*“ manifold: Transition maps are C** Halder continuous.
Note Why positive reach matters?

o Positive reach set and convex set shares some properties (e.g. Steiner formula)
= Positive reach can substitute convexity condition in some cases.
([A. Cuevas, 2012])
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yothness Thm ty Thm

o Stability Theorem ¥ satisfies above assumptions. U is bounded
2-differentiable. If ||W — W[[%_ , is sufficiently small, then

o U also saEi\sfies F2. N
o dHausdolif\(MaM) :O(”\I/_lIJHgo) N
o reach(M) > min(%2, 20— ) + O(||¥ — ¥||% 2)

20 Tl ,

@ Meaning: Using U instead of U does not ruin theoretical guarantees.
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Numerically findin sradie ow formulation Gradient Desce

Section 3

© Numerically finding Solution Manifold
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Numerically findin  Gradient flow formulation Gradient Descent

@ How to obtain points in M, when we cannot directly solve ¥(z) = 07

@ Goal: Use gradient descent.

e Will GD find points in M?
o If it does, what would be the condition for GD to be well-behave?
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Numerically findin  Gradient flow formulation Gradient Descent

Reformulazation of Problem: Gradient flow

Take any A € R®*®: Positive definite matrix. (e.g. A = I).
Let Apax, Amin largest, smallest eigenvalues of A.
Define f(z) := ¥(z)' AV (z)
Then, My = My
And, Define a gradient flow 7, () as below.
o m2(0) =z, m(t) = =V f(ma(1))
e Note: This is continuous version of Gradient descent.
e Note 2: points in M will be stationary points of this flow.

e Lemma 5 Behavior of H(x): Normal to M (z) when z € M, and
well-bahave when = € Reach(M).
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Numerically findin  Gradient flow formulation Gradient Desce

Convergence of Gradient flow

@ Under assumptions, this gradient flow converges to M.
@ Theorem 6 Under assumptions, 7, (t) satisfies the followings.
o Vz € M @ éc, ma(o0) € M.

o ﬂ'l( ) e M = limi_ o0 Hﬂ./ EE;H L M(T{'“L(OO))

o f(zn) = 0= |[lzn — me, (00)[| = O(V/ f(2r)).
@ Notes on Theorem 6

e 1: Convergence radius. Guarantees 'not too far' points from M converging to
M.

e 2: The arrives to M with the direction of normal vector. (i.e. does not take
detour)

e 3: Initial point and convergence point are not too far. (i.e. it does not
converges to far points. It converges to close point in manifold)
-. Gradient flow with suitable initial points converges to M, with efficient path.
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Numerically findin sradie ow formulation Gradient Descent

Gradient Descent

@ Gradient Flow framework = Gradient Descent framework
o Gradient Descent: z¢41 = x¢ — YV f(z¢)
e requires one more hyperparameter: the step size vy
e 7 determines whether it converges, as well as the speed of convergence.

@ What should be the condition for y for convergence and speed of
convergence?
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dient Descent

Gradient Descent: Convergence

Condition of v for GD to work well

Theorem 8 Assume above assumptions. Then,
e Initial point condition: Vz € M @ §. (Same with Conv of gradient flow)
. .. . . 1
e step size condition: Vy < mln(ij\max”\y”;’27éc)
= Too € M.
o Speed of conv: In addition, if v < %

0" min
= f(21) < F(@o)(1 — v x2S —)Y, d(we, M) < d(wo, M)(1 = 7X3Amin)/?
Meaning: with suitable initial points and step size, GD will converge to M.
Need O(log(1/€)) iterations for € error.

first element of min: decreasing objective function.
2nd element of min: Well-behaving hessian

Note: GD still converge even if f: non-convex. (Did not required such
properties)
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Numerically findin  Gradient flow formulation Gradient Descent

Gradient Descent: Implementation

@ Algorithm 1

o hyperparameters: 7: Step size; A: P.D. Matrix

e input: N: the data size, V: the target function
Q f(z) = U(a)'AV(x)
© randomly choose g from region of interest
@ iterates 111 = x¢ — YV f(z¢) until converge
Q if U(zoo) =0, keep the point. otherwise discard.
@ Repeat until reaches N samples.

@ Slight modified version of algorithm 1 in paper
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Section 4

e Statistical Applications
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Bayesian Inference

Simple Example: Univariate Gaussian by

Bayesian

Parameter of interest: (u,02%) € R x RT for N(u,0?)
Constraint: Second moment = s3 for some s.

M ={(n,0%) | s§ — p* —o* =0}

Obstacle: How to construct prior on M?

Let @: distribution on total space, Qj;: distribution on M.

We want to link @ ~ @y, so that we can generate prior Qs using Q.
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ian Inference

Distribution on Solution Manifold

e Definition Given gradient flow 7, (¢) and z € M, A(z) := {z|my(00) = 2} is
called basin of attraction for z,

@ Meaning: points whose gradient flow converges to z.

@ Theorem 7 Under assumptions, A(z) forms s dimensional manifold for each
z.
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Ba n Inference

Distribution on Solution Manifold: Cont’D

@ Outcome of Thm 7: Define Qs to be a pushforward measure of QQ, with
pushforward function defined by the gradient flow.
= Qs has a s dimensional Hausdorff density function.
@ .- Besicovitch-Marstrand-Preiss Theorem. [C. De Lellis, 2008]
o Rectifiability: Set £ C R? is Rectifiable with k-dimension if 3 countably
many C' k-dimensional submanifolds of R? which cover #*-almost all E.
e Theorem 7 shows M is Rectifiable. (A(z) will be submanifold.)
o BMP Theorem If 11 is a locally finite Radon measure on R?, k is an integer,
FE is a Rectifiable set with k-dimension. Then 3f s.t.
1(S) = [gp f dH" for VS C R
And such f coincides with Hausdorff density if density exists.
o let E =M, p=Qwm, k= s = our conditions.
@ Meaning: If density exists, it matches with the pushforward measure.

@ .. Sampling from @ and applying GD would result in points on @, and
densities of samples matches with Q

Jiyoung Park (wldyddl5510@tamu.edu) Texas A&M University


mailto:wldyddl5510@tamu.edu

Bayesian Inference

Bayesian Posterior Algorithm

@ Algorithm 3
o hyperparameters: h: normalizing; K: Smooth function

e input: IN: the data size, U: the target function
@ Apply Algorithm 1, with modifying step 2 (instead of randomly choose zg,

sample zg from w). We get (Z1, Z2, ..., Zn), points from mp;.
. . - 112;— 2]
© Estimate density score of Z; using p; v = % Eévzl K(%)
O #in =7 Z) [1jo1 p(X;120); &inv = 5
Q@ return (Z;, 03 N)i=1,...,N

@ w; y contains weights of the point.
@ This weights can be regarded as distribution on M due to Silde 23.
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ian Inference

Assumptions: Are they reasonable? How strong the assumptions?

Properties of solution manifold: positive reach, stability

Finding a solution manifold: Theoretical guarantees for using GD? How
fast it converges?

Applications: How to use bayesian model on solution manifold?
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ian Inference
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Thank You!
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