Solution Manifolds

Jiyoung Park

Statistics Ph.D. Student, Texas A&M University, College Station, TX

October 10, 2025

Section 1

- 1 Intro
- 2 Properties of Solution Manifold
 - Assumptions
 - Smoothness Thm
 - Stability Thm
- 3 Numerically finding Solution Manifold
 - Gradient flow formulation
 - Gradient Descent
- 4 Statistical Applications
 - Bayesian Inference

Simple Example

- Question: Find parameters (μ,σ^2) for $Y \sim N(\mu,\sigma^2)$ satisfying P(-5 < Y < 2) = 0.5
- ullet Total parameter space: $\mathbb{R} \times \mathbb{R}^+$
- Possible parameter space w.r.t. constraint: 1-dimensional curve (figure)
- Idea: Space of solutions forms a manifold (Solution Manifold)

The goal of the paper

- What is the property of solution manifold?
- How to find a Solution Manifold numerically?
- Concept of Solution Manifold applied to actual problems?

Notations

- $\bullet \ \Psi : \mathbb{R}^d \to \mathbb{R}^s$ Target function.
- $M_{\Psi} := \{x \mid \Psi(x) = 0\}$ Solution Manifold given Ψ . Often denoted just M.
- $\widehat{M}:=M_{\widehat{\Psi}}$ An approximation (estimation) of M, if $\widehat{\Psi}$ is an approximation (estimation) of $\Psi.$
- $\bullet \ ||\Psi||_{\infty}^J = \sup_x \max_i \max_{j_1,\dots,j_J} |\frac{\partial^J \Psi_i(x)}{\partial x_{j_1},\dots \partial x j_J}|, \ ||\Psi||_{\infty,J}^* = \max_{j=0,\dots J} ||\Psi||_{\infty}^j$
- $G_{\Psi}(x) = \nabla \Psi(x)$, $H_{\Psi}(x) = \nabla^2 \Psi(x)$.
- $\bullet \ M \oplus r := \{x \mid d(x, M) \le r\}$

Flow of the presentation

- **Properties of Solution Manifold**: lemma $1 \to Assumptions$, lemma $2 \to Smoothness Thm (Thm 3) <math>\to Stability Thm (Thm 4)$
- Numerically obtaining Solution Manifold: Conv in grad flow (Thm 6) \rightarrow Conv in GD (Thm 8) \rightarrow MCGD algorithm (Algo 1)
- ullet Statistical Applications of Solution Manifold: Theorem 7 o pushforward measure on M o Bayesian Prior and Posterior sampling from Solution Manifold (Algo 3)

Main results

- Properties of solution manifold
 - Smoothness theorem: Smoothness of $\Psi \Rightarrow$ Smoothness(?) of M_{Ψ} . (Lem 1 and Thm 3).
 - Stability theorem: $d(\widehat{\Psi},\Psi) \to 0 \Rightarrow \widehat{M} \to M$ w.r.t. the Hausdorff distance (Thm 4).
- Numerically finding Solution Manifold
 - Convergence of a gradient descent algorithm: With good initialization and proper update step, Gradient Descent algorithm can obtain points in M_{Ψ} . (Thm 6, Thm 8)
 - Monte Carlo gradient descent algorithm: Generating point clouds over M, using only Ψ and its gradient. (Algorithm 1)
- Statistical Applications of Solution Manifold
 - Local center manifold theorem: For $z \in M$, $A(z) := \{x \mid x \text{ converges to } z\}$ forms an s-dimensional manifold. (Thm 7).
 - Approximated manifold posterior algorithm: A Bayesian procedure that approximates the posterior distribution on a manifold. (Algorithm 3)

Section 2

- 1 Intro
- 2 Properties of Solution Manifold
 - Assumptions
 - Smoothness Thm
 - Stability Thm
- 3 Numerically finding Solution Manifold
 - Gradient flow formulation
 - Gradient Descent
- 4 Statistical Applications
 - Bayesian Inference

Assumptions

- Note 1 $\forall x \in M$, $\operatorname{rank}(\nabla \Psi(x)) = s \Rightarrow M$ forms a (d-s) dimensional manifold. (: Implicit function theorem)
- Assumptions
 - **F1** $\exists ||\Psi||_{\infty,3}^* < \infty$
 - **F2** $\exists \lambda_0, \delta_0, c_0 > 0$ s.t.
 - $\forall x \in M \oplus \delta_0$, $\lambda_{\min}(G_{\Psi}(x)G_{\Psi}(x)^T) = \lambda_{\min>0}(G_{\Psi}(x)^TG_{\Psi}(x)) > \lambda_0^2$.
 - $\forall x \notin M \oplus \delta_0, ||\Psi(x)||_{\max} > c_0.$
 - F1 is related with smoothness (in fact, differentiability) of Ψ .
 - F2 is related with curvature information around M. (:: lemma 1)
- Lemma 1 $\forall x \in M$, $Span(Row(G_{\Psi}(x))) = Normal(M(x))$.

Assumptions: Examples

- Are these assumptions reasonable?
- Rephrase of F2 in specific problems
 - mode estimation: $\Psi = \nabla p(x) \Rightarrow \mathsf{F2} \approx \mathsf{pdf}$: Morse function.
 - Solving MLE: $\Psi = \nabla l(\theta) \Rightarrow \mathsf{F2} = \mathsf{positive}$ definite fisher information.

Smoothness Theorem

- In general, Smoothness of $\Psi \Rightarrow$ smoothness of M, but under above assumptions, Smoothness of $\Psi \Rightarrow$ positive reach.
- **Definition** Reach Reach $(M) := \inf\{r > 0 \mid \forall x \in M \oplus r, x \text{ has a unique projection onto M}\}$
- Smoothness Theorem Under above assumptions, $\operatorname{reach}(M) \geq \min(\frac{\delta_0}{2}, \frac{\lambda_0}{||\Psi||_{\infty}^2})$
- **Remark 1** $\frac{\delta_0}{2}$ is related with folding, and $\frac{\lambda_0}{\|\Psi\|_{\infty,2}^*}$ is related with curvature.
- Note Relationship with Smoothness of Manifold?
 - Positive reach $\Rightarrow C^{1,1}$ manifold [A. Lytchak, 2005]
 - $C^{k,\alpha}$ manifold: Transition maps are $C^{k,\alpha}$ Hölder continuous.
- Note Why positive reach matters?
 - Positive reach set and convex set shares some properties (e.g. Steiner formula)
 Positive reach can substitute convexity condition in some cases.
 ([A. Cuevas, 2012])

Stability Theorem

- Stability Theorem Ψ satisfies above assumptions. $\widehat{\Psi}$ is bounded 2-differentiable. If $||\widehat{\Psi} \Psi||_{\infty,2}^*$ is sufficiently small, then
 - $\widehat{\Psi}$ also satisfies F2.
 - $d_{\mathsf{Hausdorff}}(\widehat{M}, M) = O(||\widehat{\Psi} \Psi||_{\infty}^{0})$
 - $\operatorname{reach}(\widehat{M}) \ge \min(\frac{\delta_0}{2}, \frac{\lambda_0}{||\Psi||_{\infty}^* 2}) + O(||\widehat{\Psi} \Psi||_{\infty,2}^*)$
- ullet Meaning: Using $\widehat{\Psi}$ instead of Ψ does not ruin theoretical guarantees.

Section 3

- 1 Intro
- 2 Properties of Solution Manifold
 - Assumptions
 - Smoothness Thm
 - Stability Thm
- 3 Numerically finding Solution Manifold
 - Gradient flow formulation
 - Gradient Descent
- 4 Statistical Applications
 - Bayesian Inference

Goal

- How to obtain points in M, when we cannot directly solve $\Psi(x)=0$?
- Goal: Use gradient descent.
 - Will GD find points in M?
 - If it does, what would be the condition for GD to be well-behave?

Reformulazation of Problem: Gradient flow

- Take any $\Lambda \in \mathbb{R}^{s \times s}$: Positive definite matrix. (e.g. $\Lambda = I$). Let $\Lambda_{\max}, \Lambda_{\min}$ largest, smallest eigenvalues of Λ .
- Define $f(x) := \Psi(x)^t \Lambda \Psi(x)$
- Then, $M_{\Psi}=M_f$
- And, Define a gradient flow $\pi_x(t)$ as below.
 - $\pi_x(0) = x$, $\pi'_x(t) = -\nabla f(\pi_x(t))$
 - Note: This is continuous version of Gradient descent.
 - ullet Note 2: points in M will be stationary points of this flow.
- **Lemma 5** Behavior of $H_f(x)$: Normal to M(x) when $x \in M$, and well-bahave when $x \in \text{Reach}(M)$.

Convergence of Gradient flow

- ullet Under assumptions, this gradient flow converges to M.
- **Theorem 6** Under assumptions, $\pi_x(t)$ satisfies the followings.
 - $\forall x \in M \oplus \delta_c, \ \pi_x(\infty) \in M.$
 - $\pi_x(\infty) \in M \Rightarrow \lim_{t \to \infty} \frac{\pi'_x(t)}{||\pi'(t)||} \perp M(\pi_x(\infty))$
 - $f(x_n) \to 0 \Rightarrow ||x_n \pi_{x_n}(\infty)|| = O(\sqrt{f(x_n)}).$
- Notes on Theorem 6
 - ullet 1: Convergence radius. Guarantees 'not too far' points from M converging to M.
 - 2: The arrives to M with the direction of normal vector. (i.e. does not take detour)
 - 3: Initial point and convergence point are not too far. (i.e. it does not converges to far points. It converges to close point in manifold)
 - \bullet .: Gradient flow with suitable initial points converges to M, with efficient path.

Gradient Descent

- Gradient Flow framework ⇒ Gradient Descent framework
 - Gradient Descent: $x_{t+1} = x_t \gamma \nabla f(x_t)$
 - ullet requires one more hyperparameter: the step size γ
 - ullet γ determines whether it converges, as well as the speed of convergence.
- \bullet What should be the condition for γ for convergence and speed of convergence?

Gradient Descent: Convergence

- ullet Condition of γ for GD to work well
- Theorem 8 Assume above assumptions. Then,
 - Initial point condition: $\forall x \in M \oplus \delta_c$ (Same with Conv of gradient flow)
 - step size condition: $\forall \gamma < \min(\frac{1}{\Lambda_{\max}||\Psi||_{\infty,2}^*}, \delta_c)$ $\Rightarrow x_{\infty} \in M.$
 - Speed of conv: In addition, if $\gamma < \frac{\Lambda_{\max} ||\Psi||_{\infty,2}^*}{\lambda_0^4 \Lambda_{\min}^2}$ $\Rightarrow f(x_t) \leq f(x_0) (1 \gamma \frac{\lambda_0^4 \Lambda_{\min}^2}{\Lambda_{\max} ||\Psi||_{\infty,2}^*})^t, \ d(x_t, M) \leq d(x_0, M) (1 \gamma \lambda_0^2 \Lambda_{\min})^{t/2}$
- ullet Meaning: with suitable initial points and step size, GD will converge to M.
- Need $O(log(1/\epsilon))$ iterations for ϵ error.
- first element of min: decreasing objective function.
 2nd element of min: Well-behaving hessian
- Note: GD still converge even if f: non-convex. (Did not required such properties)

Gradient Descent: Implementation

- Algorithm 1
 - hyperparameters: γ : Step size; Λ : P.D. Matrix
 - input: N: the data size, Ψ : the target function

 - $oldsymbol{2}$ randomly choose x_0 from region of interest
 - iterates $x_{t+1} = x_t \gamma \nabla f(x_t)$ until converge
 - **4** if $\Psi(x_{\infty}) = 0$, keep the point. otherwise discard.
 - \bullet Repeat until reaches N samples.
- Slight modified version of algorithm 1 in paper

Section 4

- 1 Intro
- 2 Properties of Solution Manifold
 - Assumptions
 - Smoothness Thm
 - Stability Thm
- 3 Numerically finding Solution Manifold
 - Gradient flow formulation
 - Gradient Descent
- 4 Statistical Applications
 - Bayesian Inference

Simple Example: Univariate Gaussian by Bayesian

- Parameter of interest: $(\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}^+$ for $N(\mu, \sigma^2)$
- Constraint: Second moment $= s_0^2$ for some s_0 .
- $M = \{(\mu, \sigma^2) \mid s_0^2 \mu^2 \sigma^2 = 0\}$
- Obstacle: How to construct prior on M?
- Let Q: distribution on total space, Q_M : distribution on M.
- We want to link $Q \sim Q_M$, so that we can generate prior Q_M using Q.

Distribution on Solution Manifold

- **Definition** Given gradient flow $\pi_x(t)$ and $z \in M$, $A(z) := \{x \mid \pi_x(\infty) = z\}$ is called basin of attraction for z,
- Meaning: points whose gradient flow converges to z.
- Theorem 7 Under assumptions, A(z) forms s dimensional manifold for each z.

Distribution on Solution Manifold: Cont'D

- Outcome of Thm 7: Define Q_M to be a pushforward measure of Q, with pushforward function defined by the gradient flow.
 - $\Rightarrow Q_M$ has a s dimensional Hausdorff density function.
- : Besicovitch-Marstrand-Preiss Theorem. [C. De Lellis, 2008]
 - **Rectifiability**: Set $E \subset \mathbb{R}^d$ is Rectifiable with k-dimension if \exists countably many C^1 k-dimensional submanifolds of \mathbb{R}^d which cover \mathcal{H}^k -almost all E.
 - Theorem 7 shows M is Rectifiable. (A(z) will be submanifold.)
 - BMP Theorem If μ is a locally finite Radon measure on \mathbb{R}^d , k is an integer. E is a Rectifiable set with k-dimension. Then $\exists f$ s.t. $\mu(S) = \int_{S \cap F} f \, d\mathcal{H}^k \text{ for } \forall S \subset \mathbb{R}^d$
 - And such f coincides with Hausdorff density if density exists.
- let E=M, $\mu=Q_M$, $k=s\Rightarrow$ our conditions.
- Meaning: If density exists, it matches with the pushforward measure.
- : Sampling from Q and applying GD would result in points on Q_M , and densities of samples matches with Q_M

Bayesian Posterior Algorithm

- Algorithm 3
 - hyperparameters: h: normalizing; K: Smooth function
 - input: N: the data size, Ψ : the target function
 - **a** Apply Algorithm 1, with modifying step 2 (instead of randomly choose x_0 , sample x_0 from π). We get $(Z_1, Z_2, ..., Z_N)$, points from π_M .
 - 2 Estimate density score of Z_i using $\hat{\rho}_{i,N} = \frac{1}{N} \sum_{j=1}^{N} K(\frac{||Z_i Z_j||}{h})$
 - **3** $\hat{\pi}_{i,N} = \pi(Z_i) \prod_{j=1}^n p(X_j|Z_i); \ \hat{\omega}_{i,N} = \frac{\hat{\pi}_{i,N}}{\hat{\rho}_{i,N}}$
- ullet $\hat{\omega}_{i,N}$ contains weights of the point.
- ullet This weights can be regarded as distribution on M due to Silde 23.

Summary

- Assumptions: Are they reasonable? How strong the assumptions?
- Properties of solution manifold: positive reach, stability
- Finding a solution manifold: Theoretical guarantees for using GD? How fast it converges?
- Applications: How to use bayesian model on solution manifold?

References

Yen-Chi Chen (2020)

Solution Manifold and Its Statistical Applications

Arxiv

On statistical properties of sets fulfilling rolling-type conditions

Advances in Applied Probability 44 (2), 311-329

Alex Ander Lytchak (2005)

Almost convex subsets

Geom Dedicata 115, 201-218

C. De Lellis (2008)

"Rectifiable sets, densities and tangent measures" Zurich Lectures in Advanced Mathematics.

European Mathematical Society (EMS), Zürich, 2008.

