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Introduction I

Modern statistical problems require analysis of estimators in the regime
where p >> n.

Estimators are not consistent unless the model is constrained.

Before the work of [NRWY12], many different M-estimation procedures
had been analyzed independently.

Ex: sparse regression and covariance/low-rank matrix estimation.

[NRWY12] reveal the unifying principles that support the analysis of such
estimators.
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Section 2
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Setting

Let Zn
1 = {Z1, . . . ,Zn} denote n identically distributed observations with

marginal distribution P.

Further, let L : Rp ×Zn → R be a loss function that is convex and
differentiable in θ. The risk is then given by L̄(θ) = EZn

1
[L(θ;Zn

1 )].

Define the parameter of interest and corresponding estimator by

θ⋆ ∈ arg minθ∈Rp L̄(θ),
θ̂λn ∈ arg minθ∈Rp {L(θ;Zn

1 ) + λnR(θ)} ,

where λn > 0 and R is a norm.
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Intuition

Recall that

θ⋆ ∈ arg minθ∈Rp L̄(θ) = arg minθ∈RpEZn
1
[L(θ;Zn

1 )],

θ̂λn ∈ arg minθ∈Rp {L(θ;Zn
1 ) + λnR(θ)} .

If we have any hope of θ̂λn being close to θ⋆, we need that λn → 0.

But if λn → 0 too fast, we aren’t accomplishing anything.

In addition, θ⋆ should not be too penalized by R.

Equivalently, deviations from the model constraints should be
penalized as much as possible.

The closeness of θ̂λn and θ⋆ is measured by closeness of

L(θ̂λn) + λnR(θ̂λn) and L(θ⋆) + λnR(θ⋆).

Cirkovic, He, Park (TAMU) M-estimator 7 / 56



Decomposability

Given a pair of subspaces M ⊂ M, a norm-based regularizer R is

decomposable with respect to (M,M⊥
) if

R(θ + γ) = R(θ) +R(γ), for all θ ∈ M and γ ∈ M⊥
.

The model subspace M captures the constraints of the model.

The perturbation space M⊥
captures deviations away from the

model.

Want to penalize γ ∈ M⊥
as much as possible.
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Example: Sparse vectors

For any set S ⊂ {1, 2, . . . , p} with |S | = s, define

M(S) = {θ ∈ Rp : θj = 0 for all j /∈ S},

M⊥
(S) = M⊥(S) = {θ ∈ Rp : θj = 0 for all j ∈ S}.

Here, R(θ) = ∥θ∥1 is clearly decomposable with respect to the pair
(M(S),M⊥(S)).
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Example: Low-rank matrices

In many applications (image compression, matrix completion, etc), one
assumes a signal plus noise model

Y = Θ⋆ + E ,

where Y ,Θ⋆,E ∈ Rp1×p2 and rank(Θ⋆) = r < p1 ∧ p2.

One common estimation procedure in such a model is least squares with a
nuclear norm penalization

Θ̂λn = arg minΘ∈Rp1×p2 {∥Y −Θ∥F + λn∥Θ∥nuc} ,

where

∥Θ∥nuc =
p1∧p2∑
i=1

σi (Θ).
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M ≠ M

Let U = col(Θ⋆) and V = row(Θ⋆). We can define

M(U ,V) =
{
Θ ∈ Rp1×p2 : row(Θ) ⊂ V, col(Θ) ⊂ U

}
,

M⊥
(U ,V) =

{
Θ ∈ Rp1×p2 : row(Θ) ⊂ V⊥, col(Θ) ⊂ U⊥

}
.

Suppose Θ⋆ = USV T . Note that any A ∈ M(U ,V),B ∈ M⊥
(U ,V) can

be represented as

A = U

[
Γ11 0
0 0

]
V T , B = U

[
0 0
0 Γ22

]
V T ,

for appropriate matrices Γ11, Γ22 ∈ Rr×r . Clearly ⟨A,B⟩ = tr(A′B) = 0 so

∥A+ B∥nuc = ∥A∥nuc + ∥B∥nuc.
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A key consequence of decomposability

For a given inner product ⟨·, ·⟩ the dual norm of R is given by

R⋆(v) = sup
u ̸=0

⟨u, v⟩
R(u)

.

Lemma (Lemma 1 of [NRWY12])

Suppose the regularization parameter λn satisfies

λn ≥ 2R⋆ (∇L(θ⋆;Zn
1 )) .

Then for any pair (M,M⊥
) over which R is decomposable, the error

∆̂ = θ̂λn − θ⋆ belongs to the set

C
(
M,M⊥

; θ⋆
)
≡
{
∆ ∈ Rp : R(∆M⊥) ≤ 3R(∆M) + 4R

(
θ∗M⊥

)}
.

Cirkovic, He, Park (TAMU) M-estimator 12 / 56



Restricted strong convexity (RSC)

Recall that we would like to relate closeness of L(θ⋆ + ∆̂)− L(θ⋆) to the
smallness of ∆̂.

In classical situations, this is resolved through strong convexity

δL(∆, θ⋆) = L(θ⋆ +∆)− L(θ⋆)− ⟨∇L(θ⋆),∆⟩ ≥ κ∥∆∥2,

for some κ > 0 and all ∆ in a neighborhood of θ⋆.

This is unrealistic in the high-dimensional setting.

Luckily, Lemma 1 states that we only require convexity over

C
(
M,M⊥

; θ⋆
)
.
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Restricted strong convexity (RSC)

Definition

The loss function satisfies a restricted strong convexity condition with
curvature κL > 0 and tolerance function τL if

δL(∆, θ⋆) ≥ κL∥∆∥2 − τ2L(θ
⋆), for all ∆ ∈ C

(
M,M⊥

; θ⋆
)
.

For many loss functions, it is possible to prove that with high probability

δL(∆, θ⋆) ≥ κ1∥∆∥2 − κ2g(n, p)R2(∆), for all ∥∆∥ ≤ 1,

which implies a form of RSC as long as R(∆) is sufficiently small
compared to ∥∆∥.
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Subspace compatibility constant

Definition

For any subspace M of Rp, the subspace compatibility constant with
respect to the pair (R, ∥ · ∥) is given by

ψ(M) ≡ sup
u∈M\{0}

R(u)

∥u∥
.

Hence if θ⋆ ∈ M and ∆ ∈ C
(
M,M⊥

; θ⋆
)

R(∆M⊥) ≤ 3R
(
∆M

)
,

and thus by triangle inequality R(∆) ≤ 4R(∆M) ≤ 4Ψ(M)∥∆∥.

Hence, the previous RSC condition becomes

δL(∆, θ⋆) ≥
(
κ1 − 16κ2Ψ

2(M)g(n, p)
)
∥∆∥2, for all ∥∆∥ ≤ 1.
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Section 3

Cirkovic, He, Park (TAMU) M-estimator 16 / 56



Deviation Bound for ∥θ̂λn − θ∗∥2

To prove Lemma 2.1, we need to construct a function:
F(∆) = L (θ∗ +∆)− L (θ∗) + λn {R (θ∗ +∆)−R (θ∗)} ≤ 0. Since
F(0) = 0, the optimal error ∆̂ = θ̂ − θ∗ must satisfy F(∆̂) ≤ 0. In order
to control F , we need to bound both difference of loss functions, and a
difference of regularizers. They can be bounded by the following lemma:

Lemma (Lemma 3 of [NRWY12])

R (θ∗ +∆)−R (θ∗) ≥ R
(
∆M⊥

)
−R

(
∆M

)
− 2R

(
θ∗M⊥

)
L (θ∗ +∆)− L (θ∗) ≥ −λn

2

[
R
(
∆M

)
+R

(
∆M⊥

)]
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Let us first prove the first statement of lemma 3.1

R (θ∗ +∆) = R
(
θ∗M + θ∗M⊥ +∆M +∆M⊥

)
≥ R (θ∗M) +R

(
∆M⊥

)
−R

(
θ∗M⊥

)
−R

(
∆M

)
R (θ∗ +∆)−R (θ∗) ≥ R (θM∗) +R

(
∆M⊥

)
−R

(
θ∗M⊥

)
−R

(
∆M

)
−R (θ∗)

≥ R (θM∗) +R
(
∆M⊥

)
−R

(
θ∗M⊥

)
−R

(
∆M

)
−
{
R (θ∗M) +R

(
θ∗M⊥

)}
= R

(
∆M⊥

)
−R

(
∆M

)
− 2R

(
θ∗M⊥

)
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Using the convexity of loss function, we have:

L (θ∗ +∆)− L (θ∗) ≥ ⟨∇L (θ∗) ,∆⟩ ≥ − |⟨∇L (θ∗) ,∆⟩|

Applying the duality and λn ≥ 2R∗ (∇L (θ∗)), we obtain:

− |⟨∇L (θ∗) ,∆⟩| ≥ −R∗ (∇L (θ∗))R(∆) ≥ −λn
2

[
R
(
∆M

)
+R

(
∆M⊥

)]
We can now complete the proof of Lemma 2.1. Combining the two lower
bounds of (3.1) we obtain

0 ≥ F(∆̂) ≥ λn

{
R
(
∆̂M⊥

)
−R

(
∆̂M

)
− 2R

(
θ∗M⊥

)}
− λn

2

[
R
(
∆̂M

)
+R

(
∆̂M⊥

)]
=
λn
2

{
R
(
∆̂M⊥

)
− 3R

(
∆̂M

)
− 4R

(
θ∗M⊥

)}
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Theorem (Theorem 1 of [NRWY12])

G1 Assume the regularizer R(·) is a norm, and let
(
M,M⊥) be any

subspace pair over which R(·) is decomposable.

G2 Assume the loss Ln(·) is convex and differentiable, and Ln(θ) satisfies
the RSC condition w.r.t.

(
M,M⊥) at θ = θ∗.

G3 Assume λn ≥ 2R∗ (∇L (θ∗)) holds.

Then any optimal solution θ̂λn to the convex program satisfies the bound:∥∥∥θ̂λn − θ∗
∥∥∥2 ≤ 9

λn
2

κ2L
Ψ2(M) +

λn
κL

{
2τ2L (θ∗) + 4R

(
θ∗M⊥

)}
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Sketch of proving Theorem 3.2:

F(∆) := L (θ∗ +∆)− L (θ∗) + λn {R (θ∗ +∆)−R (θ∗)}.
Constructing set K(δ) := C ∩ {∥∆∥ = δ} such that F(∆) > 0 for all
vectors ∆ ∈ K(δ).

Utilizing the property of ”star shape” set to prove that if ∆ ∈ C,
{t∆ | t ∈ (0, 1)} ⊂ C.
F(∆̂) < 0 since F(0) = 0. If ∥∆̂∥ > δ, there exist such t∗ ∈ (0, 1)
such that ∥t∗∆̂∥ = δ. Considering that F is convex and F(0) = 0,

F
(
t∗∆̂

)
≤ t∗F(∆̂) < 0, which brings contradiction. So ∥∆̂∥ ≤ δ.

Finding a lower bound for δ such that F(∆) > 0 ∀∆ ∈ K(δ) holds:

δ2 := 9
λ2n
κ2L

Ψ2(M) +
λn
κL

{
2τ2L (θ∗) + 4R

(
θ∗M⊥

)}
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By applying RSC condition and lemma 3.1, we have:

F(∆) = L(θ∗ +∆)− L(θ∗) + λn {R(θ∗ +∆)−R(θ∗)}
≥ ⟨∇L (θ∗) ,∆⟩+ κL∥∆∥2 − τ2L (θ∗) + λn {R (θ∗ +∆)−R (θ∗)}
≥ ⟨∇L(θ∗),∆⟩+ κL∥∆∥2 − τL(θ

∗)2

+ λn

{
R
(
∆M⊥

)
−R

(
∆M

)
− 2R

(
θ∗M⊥

)}
Since we have λn ≥ 2R∗(∇L(θ∗)) (Assumption G3), we can obtain a
bound for |⟨∇L(θ∗),∆⟩|:

|⟨∇L(θ∗),∆⟩| ≤ R∗(∇L(θ∗))R(∆) ≤ λn
2
R(∆)

≤ λn
2

(
R(∆M⊥) +R(∆M)

)
Plug this back, we have:

F(∆) ≥ κL∥∆∥2 − τ2L (θ∗) + λn

{
1

2
R
(
∆M⊥

)
− 3

2
R
(
∆M

)
− 2R

(
θ∗M⊥

)}
≥ κL∥∆∥2 − τ2L (θ∗)− λn

2

{
3R
(
∆M

)
+ 4R

(
θ∗M⊥

)}
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Since R
(
∆M

)
≤ Ψ(M)

∥∥∆M
∥∥ ≤ Ψ(M)∥∆∥.

F(∆) ≥ κL∥∆∥2 − τ2L (θ∗)− λn
2

{
3Ψ(M)∥∆∥+ 4R

(
θ∗M⊥

)}
≥ 0

→ ∥∆∥2 ≥ δ2 := 9
λ2n
κ2L

Ψ2(M) +
λn
κL

{
2τ2L (θ∗) + 4R

(
θ∗M⊥

)}
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Explanation for Bound of ∥θ̂λn − θ∗∥2 I

This bound is deterministic and does not require strictly convex.

This bound is a family of bounds indexed by different choices of(
M,M⊥).
Ignoring the τL. The error bound consists of two terms: estimation
error Eerr and approximation error Eapp .

Eerr := 9
λn

2

κL2
Ψ2(M) and Eapp := 4

λn
κL

R
(
θ∗M⊥

)
.

τL is the tolerance term reflecting the degree of this nonidentifiability.

Cirkovic, He, Park (TAMU) M-estimator 24 / 56



As a special case of Theorem 3.2, consider the case θ∗ ∈ M and RSC
condition holds over C

(
M,M, θ∗

)
.

Corollary (Corollary 1 of [NRWY12])

Then for every λn ≥ 2R∗ {∇Ln (θ
∗)},∥∥∥θ̂λn − θ∗
∥∥∥ ≤ 3

λn
κL

Ψ(M)

Since R(∆) ≤ 4Ψ(M)∥∆∥, we also have:

R
(
θ̂λn − θ∗

)
≤ 12

λn
κL

Ψ2(M)
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Section 4
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Lasso regression I

Let us consider M-estimator for lasso regression:

θ̂λn ∈ arg min
θ∈Rp

{
1

2n
∥y − Xθ∥22 + λn∥θ∥1

}
(1)

Under this setting:

δL (∆, θ∗) :=L (θ∗ +∆)− L (θ∗)− (∇L (θ∗) ,∆⟩

=

〈
∆,

1

n
XTX∆

〉
=

1

n
∥X∆∥22

The cone set is:

C(S) := {∆ ∈ Rp | ∥∆Sc∥1 ≤ 3 ∥∆S∥1}
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Two types RE condition I

The restricted strong convexity with respect to ℓ2-norm:

∥X∆∥22
n

≥ κL∥∆∥22 for all ∆ ∈ C(S) (2)

The restricted strong convexity with respect to ℓ1-norm:

∥X∆∥22
n

≥ κ′L
∥∆∥21
|S |

for all ∆ ∈ C(S) (3)
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Two types RE condition II

If ∆ ∈ Rp, equation (2) can be rewritten as:

∥X∆∥22
n∥∆∥2

≥ κL for all ∆ ∈ Rp/{0}

Which is equivalent as:

λmin

(
XTX

)
≥ κL

p ≫ n, and we only require strongly convex in ∆ ∈ C(S).
Equation (2) is more restrictive than equation (3) since:

∥∆∥1 ≤ 4∥∆S∥1 ≤ 4
√
|S |∥∆S∥2 ≤ 4

√
|S |∥∆∥2 for all ∆ ∈ C(S)
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Matrices satisfy RE conditions I

Σ-Gaussian ensemble: X ∈ Rn×p and each row Xi ∼ N(0,Σ):

∥X∆∥2√
n

≥ κ1∥∆∥2 − κ2

√
log p

n
∥∆∥1 for all ∆ ∈ Rp (4)

w.p. 1− c1 exp (−c2n), then for ∆ ∈ C(S):

∥X∆∥2√
n

≥ κ1∥∆∥2 − κ2

√
log p

n
∥∆∥1 ≥

(
κ1 − 4

√
|S | log p

n
κ2

)
∥∆∥2

To let equation (2) hold w.h.p and κL = κ1
2 , n > 64 (κ2/κ1)

2 |S | log p.
Similar conclusion can be got if X matrix is sampled from
sub-Gaussian designs.
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Exact sparsity LASSO I

We now derive the bound for LASSO with exact sparsity, under some
additional assumptions.

G‘1 Consider a matrix X ∈ Rn×p whose column is normalized, i.e.
∥Xj∥2/

√
n ≤ 1 for all j = 1, . . . p. Note that this 1 can be arbitrary

constant.
G‘2 Let w ∈ Rn be a 0-mean sub-Gaussian vector, i.e.

sup
v∈Sn−1

∥⟨w , v⟩∥ψ2 <∞.

But we make a remark that this condition can be relieved using
(modified) marginal sub-Gaussian definition, i.e.

max
i=1,...n

∥∥∥∥〈w , Xi√
n

〉∥∥∥∥
ψ2

<∞.

We denote the (maximum) ‘variance’ ( ̸= sub-Gaussian norm)
parameter of w as σ2.
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Exact sparsity LASSO II

Consider a linear regression problem

Y = Xθ∗ + w (5)

where
1 Card(θ∗) = s for some fixed s ≤ p: Exact sparsity condition.
2 w satisfies the sub-Gaussian condition (G‘2)
3 X satisfies ℓ2-RE condition ((2)) and column normalization condition

(G‘1).
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Exact sparsity LASSO III

Corollary (Corollary 2 of [NRWY12])

Under the above setting, the solution of (1) with λn = 4σ
√
log p/n

satisfies the following bound:

∥θ̂λn − θ∗∥22 ≤
64σ2

κ2L

s log p

n

∥θ̂λn − θ∗∥1 ≤
24σ2

κL
s

√
log p

n

with probability at least 1− c1exp(−c2nλ
2
n) for some constants c1, c2 > 0.
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Exact sparsity LASSO IV

Some remarks:

λn’s asymptotic order is λn ≍
√
log p/n.

ℓ2-error bound is asymptotically
√
s log p/n.

nλ2n ≍ log p, so that the convergence probability is indeed 1− cp.

In sum, larger dimension makes the convergence of the probability
faster, while making the actual bound loose.

Larger the σ, stronger the λn and loosening the bound. This is natural
as σ stands for the strength of the noise.
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Exact sparsity LASSO V

Sketch of the proof: Applying Cor 3.3 with appropriate quantities.
1 Note ℓ2-RE ⇒ RSC w.r.t. M = M(S).
2 ℓ1-norm is decomposable w.r.t. M(S) and its orthogonal complement,

so that M(S) = M.

3 Ψ(M(S)) = supθ∈M\{0}
∥θ∥1

∥θ∥2
=

√
s.

4 Since R∗ = ℓ∞ and ∇L(θ∗,Y ,X ) = XTw/n, we require
λn ≥ 2R∗(∇L(θ∗)) = 2∥XTw/n∥∞ to apply Cor 3.3.

5 We find that λn = 4σ
√
log p/n satisfies the lower bound in 4 with

probability at least 1− c1exp(−c2nλ
2
n).

6 All quantities for Cor 3.3 are now explicit, so we apply Cor 3.3 to
obtain the desired bound.

Cirkovic, He, Park (TAMU) M-estimator 35 / 56



Exact sparsity LASSO VI

Details for some steps:
Step 5:

Note that normalized column condition and (modified marginal)
sub-Gaussian condition imply

P
(
1

n
|⟨Xi ,w⟩| ≥ t

)
≤ 2exp

(
− nt2

2σ2

)
∀i = 1, . . . p, ∀t > 0

Union Bound⇒ P
(∥∥∥∥XTw

n

∥∥∥∥
∞

≥ t

)
≤ 2exp

(
− nt2

2σ2
+ log p

)
We choose t = 2σ

√
log p/n, λn = 2t so that

P
(
2

∥∥∥∥XTw

n

∥∥∥∥
∞

≤ λn

)
≤ 1− 2exp(log p) = 1− c1exp(−c2nλ

2
n).
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Weakly sparse LASSO I

Weakly sparse LASSO is a linear regression problem (1), (5), which
θ∗ /∈ M(S), but still ‘approximated well’ by M(S)

We first clarify the meaning of ‘approximated well’:

Fix q ∈ [0, 1]. We consider the case θ∗ ∈ ℓq-ball of radius Rq:

B(Rq) := {θ ∈ Rp :

p∑
i=1

∥θi∥q ≤ Rq}.

E.g.: q = 0, Rq = s corresponds to at most s-sparsity.

C(M(S),M(S), θ∗) = {∆ ∈ Rp : ∥∆Sc∥1 ≤ 3∥∆S∥1 + 4∥θ∗Sc∥1} is
no longer a cone set (‘star-shaped‘ set).

Since the main change of the scheme is the change in the cone set,
main modification of the analysis is to reform the RSC condition
appropriately.
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Weakly sparse LASSO II

Assume the following for solving the problem (1), (5):
1 X has normalized columns (G‘1).
2 X satisfies generalized ℓ2-RE condition (4).
3 w satisfies the sub-Gaussian condition (G‘2).
4 θ∗ ∈ Bq(Rq) for some Rq > 0: Weakly sparse condition.
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Weakly sparse LASSO III

Corollary (Corollary 3 of [NRWY12])

Under the above assumptions, if q and Rq satisfies the following condition:

√
Rq

(
log p

n

) 2−2q
4

≤ 1,

then, the optimal solution of (1), θ̂λn , with λn = 4σ
√

log p/n satisfies

∥θ̂λn − θ∗∥22 ≤ c0Rq

(
σ2

κ21

log p

n

)1− q
2

with probability at least 1− c1exp(−c2nλ
2
n) for some constants

c0, c1, c2 > 0.
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Weakly sparse LASSO IV

Some remarks:

If q = 0,Rq = s, which corresponds to at most s-sparsity, then Cor 4.2
coincides to Cor 4.1 with c0 = 64.

The condition on q and Rq implies that θ∗ needs to be ‘close enough’
to the sparse set. q ∈ [0, 1] controls the relative ‘sparsifiability’ of θ∗.
Smaller the q, more sparse the θ∗.

On the other hand, if q is smaller, Rq can be larger. So, if sparsifiability
is strong, then we can relax the ‘required closedness’ to the sparse set.

Convergence rate gets slower as q or Rq increases, meaning θ∗ is less
sparse, which is very natural.

This rate is the optimal minimax rate for all q ∈ [0, 1] ([RWY09]).
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Weakly sparse LASSO V

Sketch of the proof: As mentioned, key part is RSC condition part.
1 For some η (which will be chosen to be λn/κ1 later), define the

thresholded subset

Sη := {j ∈ {1, . . . , p} : |θ∗j | > η}.

2 Use [NRWY12][Lemma 2] to obtain the RSC condition.
3 Apply Theorem 3.2 with Ψ2(Sη) = |Sη| yielding the bound w.r.t. |Sη|

and ∥θ∗Sc
η
∥1.

4 Control |Sη| and ∥θ∗Sc
η
∥1 in terms of η, q, and Rq.

Rq ≥
∑p

i=1 |θ
∗
i |q ≥

∑
Sη

|θ∗i |q ≥ ηq|Sη|.
∥θ∗Sc

η
∥1 =

∑
i∈Sc

η
|θ∗j | =

∑
i∈Sc

η
|θ∗j |q|θ∗j |1−q ≤ Rqη1−q from θ∗ ∈ B(Rq).

5 Plug-in η = λn/κ1.
6 From here, setting λn and obtaining the probabilistic bound works

exactly same to Cor 4.1.

Cirkovic, He, Park (TAMU) M-estimator 41 / 56



GLM I

Problem setting: We consider a GLM problem, under the following
setting.

A design matrix X ∈ Rn×p is normalized by 1.
Conditionally on xi , the response yi is drawn from the following
conditional distribution:

Pθ∗(y |x) ∝ exp

(
y⟨x , θ∗⟩ − g(⟨x , θ∗⟩)

c(σ)

)
.

Here c(σ) is a known fixed scale parameter and g : R → R is the link
function.

We consider the following optimization problem, called GLM LASSO:

θ̂λn ∈ arg min
θ∈Rp

{
1

n

n∑
i=1

(g(⟨xi , θ⟩ − yi ⟨xi , θ⟩) + λn∥θ∥1

}
(6)
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GLM II

We state assumptions here:
1 GLM problem satisfies the (modified) RSC condition. i.e.

δL(∆, θ∗) ≥ κ1∥∆∥22 − κ2
log p

n
∥∆∥21 ∀∥∆∥2 ≤ 1.

2 θ∗ ∈ S .
3 s(λ2n + log p/n) < min{4κ21/9, κ1/64κ2}.
4 λn = 4B(

√
log p/n + δ) for some 0 < δ < 1.

5 The link function g ’s second derivative is bounded by B2, i.e.
∥g ′′∥∞ ≤ B2.
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GLM III

Corollary (Corollary 9.26 of [Wai19])

Under the above assumptions, with probability at least 1− 2exp(−2nδ2),

∥θ̂λn − θ∗∥22 ≤
9

4

sλ2n
κ21

∥θ̂λn − θ∗∥1 ≤ 6
sλn
κ1
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GLM IV

Some remarks:

The RSC condition 1 is indeed valid if xi ’s are 0-mean i.i.d. variables
with assumptions on second and fourth moments. See appendix and
[Wai19][Theorem 9.36] for more detail.

The third condition determine the relationship between n, λn, log p, s.
If s log p/n is small, then λn can be larger.

The choice of link function effects the regularizer strength by B. Note
that Poisson regression does not have such B, Poisson regression fails
to fall into this setting.
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GLM V

Sketch of the proof: Apply Theorem 3.2 with appropriate quantities.
1 We set a coordinate subspace, and as a result Ψ(M) =

√
s.

2 Retrive the true RSC condition on the cone set from (modified) RSC
condition on a unit ball. This is satisfied by Assumption 3.

3 We require λn ≥ 2∥∇L(θ∗)∥∞, and we show our choice

λn = 4B(
√

log p/n + δ) guarantees to be larger than RHS with high
probability.

First, we show that each element of ∇L(θ∗) is a sub-Gaussian element.

With sub-Gaussian, we can do same thing in exact LASSO case,
combining sub-Gaussian and union bound to obtain probabilistic upper
bound of ∥∇L(θ∗)∥∞.

Set λn to bound the term with the stated probability.

4 Apply Theorem 3.2.
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GLM VI

Details of the proof: sub-Gaussian of ∇L(θ∗).
Let Vij = (g ′(⟨xi , θ∗⟩)− yi )xij . Then, ∇L(θ∗) = 1

n

∑
i Vi . Note that Vi

is 0-mean vectors under the true model.
We check Vij is sub-Gaussian by analyzing its MGF.

logE(exp(−tVij)) = g(txij + ⟨xi , θ∗⟩)− g(⟨xi , θ∗⟩)− txijg
′(⟨xi , θ∗⟩)

=
1

2
t2x2ijg

′′(sxij + ⟨xi , θ∗⟩) ≤
1

2
t2x2ijB

2

by Taylor expansion and bound on g ′′.
Independence and normalized column leads to

logE(exp(−t
1

n

∑
i

Vij)) ≤
1

n
logE(exp(−t

∑
i

Vij))

≤ 1

2
t2B2(

1

n

∑
i

x2ij ) ≤
1

2
t2B2.

proving the sub-Gaussianness of jth element of Vi .
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Conclusion
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Conclusion

The paper explores a broad framework of regularized M-estimators,
capturing various problems as specific instances.

It achieves a cohesive theoretical understanding through fundamental
techniques and measures.

Essential elements include the decomposability of R(·), restricted
strong convexity (RSC) of Ln(·), the dual R∗(·), and the subspace
compatibility constant Ψ(·).

It establishes convergence rates for diverse scenarios:

These include linear regression with different sparsity types, sparse
generalized linear models (GLM), and low-rank matrix recovery.
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Lemma 2 of [NRWY12] I

[NRWY12][Lemma 2]

Lemma

Assume conditions in Cor 4.2 holds and n > 9κ2|Sη| log p. Then with
η = λn/κ1, RSC condition with κL = κ1/2, and τL = 2κ2

√
log p/n∥θ∗Sc

η
∥1

holds over C(M(Sη),M⊥(Sη), θ
∗).
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Lemma 2 of [NRWY12] II

Sketch of the proof:
1 Notice for all ∆ ∈ C(Sη),

∥∆∥1 ≤ 4∥∆Sη
∥1 + 4∥θ∗Sη

∥1 ≤ 4
√
|Sη|∥∆∥2 + 4Rqη

1−q

≤ 4
√
Rqη

−q/2∥∆∥2 + 4Rqη
1−q.

2 Plug-in the above ∥∆∥1 to generalized RE condition (4), which leads to

∥XT∆∥2√
n

≥ ∥∆∥2

(
κ1 − κ2

√
Rq log p

n
η−q/2

)
− κ2

√
log p

n
Rqη

1−q.

3 With the setting λn = 4σ
√
log p/n, η = λn/κ1, and the condition on

n, the middle term is ≤ κ1/2, which implies

∥XT∆∥2√
n

≥ κ1
2
∥∆∥2 − 2κ2

√
log p

n
∥θ∗Sc

η
∥1.
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Rademacher Complexity

Definition (Rademacher Complexity)

Let Sn = {x1, . . . , xn} be a set of points in Rd (a data sample) and F a
real-valued function class. We define the empirical Rademacher complexity
of F on the data sample as

R̂ad(F ; Sn) = Eϵ

[
sup
f ∈F

1

n

n∑
i=1

ϵi f (xi )

]

where ϵi are iid random variables which take the values ±1 with equal
probability 1

2 . The population Rademacher complexity is defined as

Radn(F) = ESn∼Pn

[
R̂ad(F ;Sn)

]
,

i.e. as the expected empirical Rademacher complexity over a set of n iid
data points.
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Theorem 9.36 of [Wai19] I

Theorem (Theorem 9.36 of [Wai19])

Assume the following:

1 xi ’s are i.i.d. samples of 0-mean distributions.

2 There exists a positive constants α, β > 0 such that E[⟨∆, x⟩2] ≥ α
and E[⟨∆, x⟩4] ≤ β for all ∆ ∈ Sp−1.

Then, in GLM setting with general R,

δL(∆, θ∗) ≥ κ

2
∥∆∥22 − c0R̂ad(BR∗(1))R(∆)2 ∀∆ ∈ Sp−1

with probability at least 1− c1exp(−c2n) for some constant
κ, c0, c1, c2 > 0.
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Theorem 9.36 of [Wai19] II

Some remarks:

In GLM Lasso case, R = ∥ · ∥1. By calculating the Rademacher
complexity of ℓ∞ dual norm ball, we can retrieve the log p/n in RSC
for GLM.
Proof idea of [Wai19][Theorem 9.36]:

1 Start with the Taylor series of the error term on θn = θ∗ +∆ up to
second term.

2 The trick is to apply truncations on ⟨θ∗, xi ⟩ and ⟨∆, xi ⟩, which still
yields lower bound of the error term. This is because the error is always
positive (due to basic inequality). This makes the error Lipschitz.

3 Once we have Lipschitz, it is sufficent to control the domain with high
probability, instead of the error itself. This can be done by using
moment conditions.
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