Minimax optimality of diffusion models

Jiyoung Park

October 10, 2025

Outline

- Introduction
- Preliminaries
- Main result
- Further discussions

• Let P^* be an arbitrary target measure. Set $X_0 \sim P^*$ and construct a diffusion model from n data D_n . Let \widehat{Y}_T be the random element induced from the diffusion model after the sufficient iterations T. Then, what would be the worst case estimation rate, *i.e.*,

$$\sup_{X_0 \sim P^*} \mathbb{E}_{D_n} d\left(X_0, \widehat{Y}_T\right) \lesssim n^{-\square}?$$

- How optimal the above rate is?
 - For \widehat{P} any estimator of P^* , the following rate is called 'minimax optimal rate':

$$\inf_{\widehat{P}} \sup_{P^*} \mathbb{E}_{D_n} d(P^*, \widehat{P}) \gtrsim n^{-\square}.$$

- ullet Can diffusion model achieve the minimax optimal rate? YES, at least nearly, when d=TV or W_1 .
- I will focus on $d = W_1$; this one has more interesting intuition than TV.

Preliminaries

- Besov space: characterizes a function space with some 'smoothness'.
 - Fix the domain of X by $\Omega := [0,1]^d$, a unit hypercube.
 - For $f \in L^p(\Omega)$, define the 'rth-modulus of smoothness':

$$w_{r,p}(f,t) := \sup_{\|h\| \le t} \left\| \Delta_h^r(f) \right\|_{L^p(\Omega)},$$

where $\Delta_h^r(f)(x) := \sum_{i=0}^r {r \choose i} (-1)^{r-j} f(x+jh)$ if $x, x+h \in \Omega$, and 0 otherwise.

• E.g.
$$\Delta_h^1(f)(x) = f(x+h) - f(x)$$
; $\Delta_h^2(f)(x) = f(x+2h) - 2f(x+h) + f(x)$.

• Let $r = \lfloor s \rfloor + 1$, and define a Besov semi-norm

$$|f|_{\mathcal{B}_{\rho,q}^{\mathbf{S}}(\Omega)} := \left\{ \begin{array}{ll} \left[\int_{\Omega} \left(\frac{w_{r,\rho}(f,t)}{t^{\mathbf{S}}} \right)^{q} \frac{dt}{t} \right]^{\frac{1}{q}} & 0 < q < \infty, \\ \sup_{t>0} \frac{w_{r,\rho}(f,t)}{t^{\mathbf{S}}} & q = \infty. \end{array} \right.$$

- $\bullet \ \ \text{If} \ f \ \text{satisfies} \ \|f\|_{B^s_{\rho,q}(\Omega)}:=\|f\|_{L^p(\Omega)}+|f|_{B^s_{\rho,q}(\Omega)}<\infty, \ \text{then} \ f \ \text{is said to be in a Besov space} \ B^s_{\rho,q}(\Omega).$
- Besov space is not a Banach space, but quasi-Banach space.
- Easier interpretaions by examples:
 - $B_{p,1}^s(\Omega) \hookrightarrow W_p^s(\Omega) \hookrightarrow B_{p,\infty}^s(\Omega)$. Particulary, $B_{2,2}^s(\Omega) = W_2^s(\Omega)$.
 - $B_{p,q}^{s} \approx W_p^s$, and q is just for some finer distinctions.
 - As in Sobolev embedding, s > d/p implies the continuity of f.
 - Important example for later: $B^1_{\infty,1}(\Omega) \hookrightarrow Lip(\Omega) \hookrightarrow B^1_{\infty,\infty}$.

• Let $\Phi(L, W, S, B)$ be a L-layer W-width ReLU Deep neural network with the following structure:

$$\Phi(L, W, S, B)(x) = \left[\left(W^{(L)}(\cdot) + b^{(L)} \right) \circ \sigma \cdots \circ \sigma \circ \left(W^{(1)}(\cdot) + b^{(1)} \right) \right] (x). \tag{1}$$

- σ: ReLU activation function.
- L: Neural network depth.
- W: Neural network width, i.e., $W^{(l)} \in \mathbb{R}^{W \times W}$, $b^{(l)} \in \mathbb{R}^{W}$ for all l = 1, ..., L.
- S: Sparsity parameter, i.e., $\sum_{l=1}^{L} \left[\| W^{(l)} \|_{0} + \| b^{(l)} \|_{0} \right] \leq S$.
- B: Norm constraint, i.e., $\max_{l=1,\ldots,L} \left[\left\| W^{(l)} \right\|_{\infty}, \left\| b^{(l)} \right\|_{\infty} \right] \leq B$.

- Goal: Given only data $x_i \stackrel{i.i.d}{\sim} P^*$, generate more samples $x_i \sim P^*$.
- Procedure:
 - **4** Assume P^* : initial distribution of some Ornstein–Ulhenbeck (OU) process, i.e., for $X_0 \sim P_0 = P^*$,

$$dX_t = -\beta_t X_t dt + \sqrt{2\beta_t} dB_t.$$

Note $X_t \to N(0, I)$ exponentially. We consider this process up to some timestep T.

- ② Let $Y_0 \sim N(0, I)$. The goal is to construct a dynamical system Y_t s.t. $Y_t = X_{T-t} \Rightarrow Y_T = X_0 = X^*$.
- **3** Then, the following SDE induces $Y_t = X_{T-t}$ (reverse process):

$$dY_t = \beta_{T-t}(Y_t + 2\nabla \log P_{T-t}(Y_t))dt + \sqrt{2\beta_{T-t}}dB_t.$$

③ Y_T is the distribution we desire, but we cannot obtain this as we do not know the P_t . Instead, assume for each t we have $\widehat{s}(Y_t, t)$, an estimator of the score function $\nabla \log P_t(Y_t)$. Consider the estimator \widehat{Y}_t :

$$d\widehat{Y}_t = \beta_{T-t}(\widehat{Y}_t + 2\widehat{s}(\widehat{Y}_t, T-t))dt + \sqrt{2\beta_{T-t}}dB_t.$$

③ To generate $x_i \sim P^*$, set $\widehat{Y}_0^{(i)} \stackrel{i.i.d}{\sim} N(0, I) \Rightarrow x_i = \widehat{Y}_T^{(i)} \approx P^*$, given \widehat{s} is a *nice* estimator.

• To obtain the *nice* estimator $\widehat{s}(Y_t, T-t)$, one trains a function (typically DNN) with 'score mathcing loss'. Fix some function class \mathcal{S} (typically DNN); then, for some fixed $\epsilon > 0$, define

$$\begin{split} \widehat{s} &= \underset{s \in \mathcal{S}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \int_{\epsilon}^{T} \mathbb{E}_{\mathbf{x}_{t} \sim P_{t}(\mathbf{x}_{t} | (\mathbf{x}_{0,i})_{i=1,...,n})} \left[\left\| s(\mathbf{x}_{t},t) - \nabla \log P_{t}(\mathbf{x}_{t} | (\mathbf{x}_{0,i})_{i=1,...,n}) \right\|^{2} \right] dt \\ &\approx \underset{s \in \mathcal{S}}{\operatorname{argmin}} \mathbb{E}_{\mathbf{x}_{0} \sim P^{*}} \left[\int_{0}^{T} \mathbb{E}_{\mathbf{x}_{t} \sim P_{t}(\mathbf{x}_{t} | \mathbf{x}_{0})} \left[\left\| s(\mathbf{x}_{t},t) - \nabla \log P_{t}(\mathbf{x}_{t} | \mathbf{x}_{0}) \right\|^{2} \right] dt \right]. \end{split}$$

• Note we set the target as $\nabla \log P_t(x_t|x_0)$ instead of $\nabla \log P_t(x_t)$; this trick is sometimes called a score matching trick.

• Let $\mathcal P$ to be a set of absolutely continuous probability measures on Ω with density f in a Besov space $\mathcal B^s_{p,q}(\Omega)$ and bounded below and above by C_f^{-1} and C_f .

Theorem (Minimax optimality (NWB22))

For any estimator $\widehat{P} \in \mathcal{P}$ constructed using n data $D_n = (x_i)_{i=1,...,n}$,

$$n^{-\frac{s+1}{2s+d}} \lesssim \inf_{\widehat{P} \in \mathcal{P}} \sup_{P^* \in \mathcal{P}} \mathbb{E}_{D_n} W_1(P^*, \widehat{P}).$$

Theorem (Diffusion models are nearly minimax optimal (OAS23))

For any $\delta > 0$, if we train the diffusion model with the score estimator $\widehat{s}(x,t) \in \Phi(L,W,S,B)$ for some L,W,S,B that depends on n,d,p,s,T and $T \geq \frac{(s+1)\log n}{\min_t \beta_t(2s+d)}$, then

$$\sup_{X_0 \sim P^* \in \mathcal{P}} \mathbb{E}_{D_n} W_1(X_0, \widehat{Y}_T) \lesssim n^{-\frac{s+1-\delta}{2s+d}}.$$

- DNN diffusion model is 'nearly' (the gap is $n^{\frac{\delta}{2s+d}}$) minimax optimal.
- In practice, the score loss blows up as $t \to 0$, so often one uses clipping $t \in [\epsilon, T]$ for some $\epsilon > 0$. The actual theorem is written w.r.t $\widehat{Y}_{T-\epsilon}$, but for simplicity we assume $\epsilon = 0$.

- Result is from (NWB22)[Theorem 3, Proposition 3].
- Key idea: Observe the following calculation (MRCS10): for any $h \in C^1(\Omega)$,

$$\begin{split} \int_{\Omega} h(dP - dQ) &= \int_{0}^{1} \frac{d}{dt} \left(\int h dP_{t} \right) dt = \int_{0}^{1} \int_{\Omega} \nabla h \cdot v_{t} dP_{t} dt \\ &\leq \left(\int_{0}^{1} \int_{\Omega} \|\nabla h\|^{p} dP_{t} dt \right)^{1/p} \left(\int_{0}^{1} \int_{\Omega} \|v_{t}\|^{q} dP_{t} dt \right)^{1/q} \\ &\leq C^{1/p} \left\| \nabla h \right\|_{L^{p}(\Omega)} W_{q}(P, Q). \end{split}$$

- If $P, Q \in \mathcal{P}$, one can choose the optimal h in LHS to get $\|f_P f_Q\|_{B_{1,\infty}^{-1}} \lesssim W_1(P,Q)$.
- Plug-in $P=P^*, Q=\widehat{P}$, and $\left\|f_{P^*}-f_{\widehat{P}}\right\|_{B_{1,\infty}^{-1}}$'s lower bound can be derived using the standard Besov space minimax estimation technique (KP92).

- To prove the minimax optimality of the DNN diffusion model, we first need the performance guarantee of DNN in general Besov function estimation.
- Consider the problem of estimating $f^* \in B_{B^s_{p,q}(\Omega)} \cap B_{L^{\infty}(\Omega)}(0,F)$ for some F > 0, with the data $y_i = f^*(x_i) + \epsilon_i$ with $\epsilon_i \stackrel{i.i.d}{\sim} N(0,\sigma^2)$ and $X \sim P$ where $supp(P) \subseteq \Omega$.

Theorem (DNN estimator of Besov function)

Let $\widehat{f} := \operatorname{argmin}_{h \in \Phi(L,W,S,B)} \sum_{i=1}^{n} |y_i - h(x_i)|^2$ with L,W,S,B that depends on n,s,d,p. For all $f^* \in B_{B_{0,d}^s(\Omega)}(0,1) \cap B_{L^\infty(\Omega)}(0,F)$ with some F > 0,

$$\mathbb{E}_{D_n} \left\| f^* - \widehat{f} \right\|_{L^2(P)}^2 \lesssim n^{-\frac{2s}{2s+d}} (\log n)^3.$$

- The proof consists of two ingredients:
 - ullet Approximation of Besov function by some DNN \widetilde{f} (may depend on f^*).
 - ullet Statistical learning theory to control the error between \widehat{f} and any choice of the approximator \widetilde{f} .
 - ullet Total error is bounded by the above two errors $\left\|\widehat{f}-\widetilde{f}\right\|, \left\|\widetilde{f}-f^*\right\|.$

• Optimal approximation error: For sufficiently large $N \in \mathbb{N}$, there exists L, W, S, B that depends on N, d, s, p s.t.

$$\sup_{f^* \in B_{B_n^n(\Omega)}(0,1)} \inf_{\widetilde{f} \in \Phi(L,W,S,B)} \left\| \widetilde{f} - f^* \right\| \lesssim N^{-\frac{s}{d}}.$$

- Basic strategy: two-stage approximation: $B_{p,q}^s(\Omega) \approx \text{B-spline functions} \approx \Phi(L, W, S, B)$.
 - B-spline functions:
 - Fix m and consider

$$N_m(x_i) := \underbrace{\left(\underbrace{\mathbb{1}_{[0,1]} * \mathbb{1}_{[0,1]} * \cdots * \mathbb{1}_{[0,1]}}_{(m+1) \text{ times}} \right)}(x_i).$$

- $N_m(x)$ is a piecewise polynomial of the order m.
- The following basis is called B-spline.

$$M_{k,j}^{m,d}(x) := \prod_{i=1}^d N_m(2^{k_i}x_i - j_i).$$

One can think of j as a location parameter (like 0th Haar wavelet basis) and k as spatial resolution (like kth Haar wavelet basis).

Key ingredient: Approximation II

- $B_{p,q}^s(\Omega) \approx \text{B-spline}$ is established in (DP88).
- B-Spline $\approx \Phi(L, W, S, B)$ is from the following observations:
 - For some M > 0, write $\phi_{(0,M)}(x) := \sigma(x) \sigma(x M) = M \wedge \sigma(x)$.
 - Observe $N_m(x)$ has the form

$$N_m(x) = \frac{1}{m!} \sum_{j=0}^{m+1} (-1)^j \binom{m+1}{j} (m+1)^m \left(\phi_{(0,1-\frac{j}{m+1})} \left(\frac{x-j}{m+1} \right) \right)^m.$$

First, we focus on approximating $\left(\phi_{\left(0,1-\frac{j}{m+1}\right)}\left(\frac{x-j}{m+1}\right)\right)^m$.

• (Yar17) showed for some $D \in \mathbb{N}$ there exists $\psi : \mathbb{R}^D \to \mathbb{R} \in \Phi(L_1, W_1, S_1, B_1)$ for some L_1, W_1, S_1, B_1 that depends on m and ϵ such that

$$\sup_{x \in [0,M]} \left| \psi \underbrace{\left(\phi_{(0,M)} \left(\frac{x}{M} \right), \dots, \phi_{(0,M)} \left(\frac{x}{M} \right) \right)}_{m \text{ times. Write this function as } \psi \circ \phi_{(0,M)}(x/M).} - \left(\phi_{(0,M)} \left(\frac{x}{M} \right) \right)^m \right| \leq \epsilon$$

• Therefore, the reasonable construction of the approximator of $N_m(x)$ will be

$$f(x) = \frac{1}{m!} \sum_{i=0}^{m+1} (-1)^j \binom{m+1}{j} (m+1)^m \left(\psi \circ \phi_{(0,1-\frac{j}{m+1})} \left(\frac{x-j}{m+1} \right) \right).$$

• Then, appropriately using ψ and f makes the form of $M_{0.0}^{m,d}(x)$.

• For any F > 0 and any function space $\mathcal{F} \subseteq B_{L^{\infty}(\Omega)}(0, F)$, there exists the following generalization gap type bound:

$$\mathbb{E}_{D_n} \left\| f^* - \widehat{f} \right\|_{L^2(P)}^2 \le C \left(\underbrace{\inf_{\underline{f} \in \mathcal{F}} \| f^* - f \|_{L^2(P)}^2}_{\approx \| f^* - \widetilde{f} \|^2} + \underbrace{(F^2 + \sigma^2) \frac{\log N(\mathcal{F}, \delta, \| \cdot \|_{\infty})}{n} + \delta(F + \sigma)}_{\approx \mathbb{E} \| \widehat{f} - \widetilde{f} \|^2} \right).$$

Proof strategy:

- ① Substitute \widehat{f} to the closest δ -minimal covering of $\mathcal F$ and use the fact $\mathcal F\subseteq B_{L^\infty(\Omega)}(0,F)$ to bound the population risk by the empirical risk (Hardest part).
- **@** Bound the empirical risk in terms of the optimal recovery error: By using the fact that \hat{f} is ERM.
- Set $\mathcal{F} = \Phi(L, W, S, B) \cap B_{L^{\infty}(\Omega)}(0, F)$, and then the covering number analysis will give the following:

$$\log N\left(\Phi(L,W,S,B),\delta,\left\|\cdot\right\|_{\infty}\right)\leq 2SL\log\left((B\vee 1)(W+1)\right)+S\log\left(\frac{L}{\delta}\right).$$

• Set $\delta = 1/n$, and in Step 1's RHS.

Statistical learning II

- Apply (1). the approximation result to get $\inf_{f \in \mathcal{F}} \|f^* f\|_{L^2(P)}^2 \lesssim N^{-\frac{s}{d}}$, and (2). the covering number bound obtained in Step 2 with specific L, W, S, B in the approximation result.
- Then, optimizing the RHS w.r.t. N will induce the claimed bound with $N \asymp n^{\frac{d}{2s+d}}$.

- Since we are estimating the score (log-derivative) uniformly over the time t, there is a slight
 modification of the above result.
- Naively, this seems like a d+1 dimensional and s-1 smoothness function estimation problem. But, there is additional information for this problem: $P(X_t|X_0) \sim N(m_t X_0, \sigma_t^2)$ for some m_t, σ_t^2 .
- $\therefore P_t(x) = \int P_0(y) K_{\sigma_t^2}(\|x m_t y\|^2) dy$ where $K_{\sigma_t^2}$ is a Gaussian kernel. Therefore, our target $\nabla \log P_t(x)$ also written as a fraction of $B_{p,q}^s * K_{\sigma_t^2}$.
- If we substitute $N_m(2^{k_i}x_i-j_i)$ in the B-spline by

$$E_{j,k}(x_i,t) = \int \mathbb{1}_{\{0,1\}} (2^{k_i} x_i - j_i) P_{N(m_t y_i, \sigma_t^2)}(x_i) dy_i,$$

Gaussian parts and Besov density parts separately controlled each other, and one can approximate $B^s_{p,q} * K_{\sigma^2_t}$ by $E_{j,k}(x_i,t)$. One can do the similar procedure as the above with this bases.

• \Rightarrow Population Score Loss of $\widehat{s} \lesssim n^{-\frac{2s}{2s+d}} (\log n)^{16}$

Using the Besov space estimation result, one can show

$$\sup_{P^*} \mathbb{E}_{D_n} TV(X_0, \widehat{Y}_T) \lesssim n^{-\frac{s}{2s+d}} (\log n)^8.$$

- W_1 rate $n^{-\frac{s+1-\delta}{2s+d}}$ turned out to be faster. Why?
- Key observation: Utilizing the smoothness of the Gaussian noise.
 - Note the score network $s(X_t, t)$ does not have to be uniformly same over the time.
 - Observe $s_0 \approx \nabla B_{p,q}^s$, while $s_T \approx \nabla N(0, I)$.
 - Since N(0, I) is very smooth, s_T is much easier to approximate/estimate than s_0 .
 - ... After the certain timestep t', estimation error is expected to be much smaller.
 - Wrong but intuitive illustration:

$$d(\widehat{P}_{[0,T]},P_{[0,T]}^*) \leq \underbrace{d(\widehat{P}_{[0,t']},P_{[0,t']}^*)}_{\text{non-smooth target}} + \underbrace{d(\widehat{P}_{[t',T]},P_{[t',T]}^*)}_{\text{smooth target (Gaussian score)}} \; .$$

When d = TV, the 'non-smooth' term dominates, so cannot improve the DNN estimator rate. But when $d = W_1$, non-smooth part contributes less, so there is an improvement.

• For given $s, r \in [0, T]$, let $\overline{Y}^s(r)_t$ be a stochastic process s.t. $\overline{Y}^s(r)_0 = P_r$ and

$$d\overline{Y}^{s}(r)_{t} = \begin{cases} \beta_{T-t}(\overline{Y}^{s}(r)_{t} + 2\nabla \log P_{T-t}(\overline{Y}^{s}(r)_{t}))dt + \sqrt{2\beta_{T-t}}dB_{t} & t \in [0, T-s], \\ \beta_{T-t}(\overline{Y}^{s}(r)_{t} + 2\widehat{s}_{t}(\overline{Y}^{s}(r)_{t}, T-t))dt + \sqrt{2\beta_{T-t}}dB_{t} & t \in [T-s, T]. \end{cases}$$

i.e., use the true score up to T-s and then use the estimated score from T-s. Particularly, one can think of $\overline{Y}^0(r)_t, \overline{Y}^T(r)_t$ similar to $Y_{T-r+t}, \widehat{Y}_{T-r+t}$.

- **⑤** First term: \widehat{Y}_T and $\overline{Y}^T(T)_T$ only differs in the initial distributions (N(0, I) and P_T resp.), leading to $\lesssim TV(N(0, I), P_T) \leq \exp(-\beta T)$ (∵ reverse OU process).

Second term:

- Discretize [0, T] by the partition made by $t_j = C^j n^{-\frac{2-\delta}{2s+d}}$ for some $j = 1, \dots, k = O(\log n)$. Here C is a constant that makes $C^k n^{-\frac{2-\delta}{2s+d}} = T$. A certain t_i will be t' mentioned above.
- Important: This interval is not 'equi-length'. Smaller t has the smaller interval.
- $\mathbb{E}W_1(X_0, \overline{Y}^T(T)_T) \leq \sum_i \mathbb{E}W_1(\overline{Y}^{j-1}(T)_T, \overline{Y}^j(T)_T).$
- $\overline{Y}^{j-1}(T)_T$ and $\overline{Y}^j(T)_T$ has the same initial distribution as well as the dynamics, except the difference in the drift term of $[t_{i-1}, t_i]$.
- Girsanov Theorem gives the KL bound of such processes in terms of the difference between drift terms, and (omitting the complicated steps) leads to

$$\mathbb{E}_{x_0} W_1(\overline{Y}^{j-1}(T)_T, \overline{Y}^{j}(T)_T) \lesssim \sqrt{t_j \log n \int_{t_{j-1}}^{t_j} \mathbb{E}_{x_t, x_0 \sim P_t, P_0} \|\widehat{s}(x_t, t) - \nabla \log P_t(x_t)\|^2 dt} + n^{-\frac{s+1}{2s+d}}.$$

Note the bound gets smaller when t_j is small (corresponding to the Key Observation).

• Plug-in the estimation error bound of the score loss (in the interval $[t_{j-1}, t_j]$), and plug-in $t_j = C^j n^{-\frac{2-\delta}{2s+d}}$ to derive the desired value.

Some Remarks for the proof

- The extra term δ appears in W_1 from optimizing the choice of the threshold t'.
- In case of TV distance, one obtains the bound as in the above, but with t_j part substituted by O(1). So, one cannot tighten the bound when t_j is small, so the error of non-smooth part equally contributes.
- One can think of this as 'Mean-diff ($\approx W_1$) \leq Max-diff (\approx TV)' type inequality.

Summary

- ullet DNN diffusion model with score mathcing loss achieves almost minimax rate w.r.t. W_1 (and TV) distance.
- The fundamental ingredient is from the minimax function estimation in Besov space.
 - Approximation theory to obtain the good approximator (B-Spline in Besov case).
 - Learning theory to bound the gap between estimator and the approximator.
- The OU process structure of the diffusion model gives some advantage:
 - Target score has the same smoothness as the density.
 - As $t \to T$, target score gets smoother.

Limitations

- How to actually train such a constraint neural network?
 - Can we reformulate the constraint into tractable ways, e.g., unconstraint optimization with appropriate regularizer?
 - Constraints play a role in two parts:
 - **a** Approximation: S, B enables to avoid the overfitting to the noise (\approx LASSO type regularizer).
 - Learning: S, B enables to bound the covering number, which controls the generalization bound.
 - It is not immediate how to avoid such constraints in the approximation stage: Relationship to weight decay type penalty?
 - On the other hand, there are alternative approaches to obtain a generalization bound (e.g., Rademacher complexity) to avoid the constraint. Can we utilize those?
 - PAC (Bayes) type analysis for the specific algorithm?
- Adaptivity
 - Constructing $\Phi(L, W, S, B)$ requires the prior knowledge on the regularity of the P^* ; e.g., choices of L, W, S, B require s, p. This makes the estimation non-adaptive.
- Claims using 'two' DNNs at [0, t'] and [t', T] improves the rate. When to exactly? Can $\widehat{s}(x_t, t)$ be adaptive to t'?

Thank You For Your Attention!

- [DP88] R. A. Devore and V. Popov, Interpolation of besov spaces, American Mathematical Society 305 (1988), 397 – 414.
- [KP92] G. Kerkyacharian and D. Picard, Density estimation in besov spaces, Statistics Probability Letters 13 (1992), no. 1, 15–24.
- [MRCS10] Bertrand Maury, Aude Roudneff-Chupin, and Filippo Santambrogio, A macroscopic crowd motion model of gradient flow type, 2010.
 - [NWB22] Jonathan Niles-Weed and Quentin Berthet, Minimax estimation of smooth densities in Wasserstein distance, The Annals of Statistics **50** (2022), no. 3, 1519 1540.
 - [OAS23] Kazusato Oko, Shunta Akiyama, and Taiji Suzuki, Diffusion models are minimax optimal distribution estimators, ICLR 2023 Workshop on Mathematical and Empirical Understanding of Foundation Models, 2023.
 - [Yar17] Dmitry Yarotsky, Error bounds for approximations with deep relu networks, 2017.