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Main question

Let P∗ be an arbitrary target measure. Set X0 ∼ P∗ and construct a diffusion model from n
data Dn. Let ŶT be the random element induced from the diffusion model after the
sufficient iterations T . Then, what would be the worst case estimation rate, i.e.,

sup
X0∼P∗

EDnd
(
X0, ŶT

)
≲ n−□?

How optimal the above rate is?

For P̂ any estimator of P∗, the following rate is called ‘minimax optimal rate’:

inf
P̂

sup
P∗

EDnd(P
∗
, P̂) ≳ n−□

.

Can diffusion model achieve the minimax optimal rate? YES, at least nearly, when d = TV or W1.

I will focus on d = W1; this one has more interesting intuition than TV .
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Preliminaries
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Preliminaries: Besov space I

Besov space: characterizes a function space with some ‘smoothness’.

Fix the domain of X by Ω := [0, 1]d , a unit hypercube.
For f ∈ Lp(Ω), define the ‘rth-modulus of smoothness’:

wr,p(f , t) := sup
∥h∥≤t

∥∥∆r
h(f )

∥∥
Lp (Ω)

,

where ∆r
h(f )(x) :=

∑r
j=0

(r
j

)
(−1)r−j f (x + jh) if x, x + h ∈ Ω, and 0 otherwise.

E.g. ∆1
h(f )(x) = f (x + h) − f (x); ∆2

h(f )(x) = f (x + 2h) − 2f (x + h) + f (x).

Let r = ⌊s⌋ + 1, and define a Besov semi-norm

|f |Bs
p,q (Ω) :=


[∫

Ω

(
wr,p (f ,t)

ts

)q
dt
t

] 1
q 0 < q < ∞,

supt>0
wr,p (f ,t)

ts q = ∞.

If f satisfies ∥f ∥Bs
p,q (Ω) := ∥f ∥Lp (Ω) + |f |Bs

p,q (Ω) < ∞, then f is said to be in a Besov space Bs
p,q(Ω).

Besov space is not a Banach space, but quasi-Banach space.

Easier interpretaions by examples:

Bs
p,1(Ω) ↪→ W s

p (Ω) ↪→ Bs
p,∞(Ω). Particulary, Bs

2,2(Ω) = W s
2 (Ω).

Bs
p,q ≈ W s

p , and q is just for some finer distinctions.

As in Sobolev embedding, s > d/p implies the continuity of f .

Important example for later: B1
∞,1(Ω) ↪→ Lip(Ω) ↪→ B1

∞,∞.
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Preliminaries: Neural Network

Let Φ(L,W , S ,B) be a L-layer W -width ReLU Deep neural network with the following
structure:

Φ(L,W , S,B)(x) =
[(

W (L)(·) + b(L)
)
◦ σ · · · ◦ σ ◦

(
W (1)(·) + b(1)

)]
(x). (1)

σ: ReLU activation function.
L: Neural network depth.

W : Neural network width, i.e., W (l) ∈ RW×W , b(l) ∈ RW for all l = 1, . . . , L.

S: Sparsity parameter, i.e.,
∑L

l=1

[∥∥∥W (l)
∥∥∥
0
+
∥∥∥b(l)

∥∥∥
0

]
≤ S .

B: Norm constraint, i.e., maxl=1,...,L

[∥∥∥W (l)
∥∥∥
∞

,
∥∥∥b(l)

∥∥∥
∞

]
≤ B.
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Preliminaries: Diffusion model I

Goal: Given only data xi
i.i.d∼ P∗, generate more samples xi ∼ P∗.

Procedure:
1 Assume P∗: initial distribution of some Ornstein–Ulhenbeck (OU) process, i.e., for X0 ∼ P0 = P∗,

dXt = −βtXtdt +
√

2βtdBt .

Note Xt → N(0, I ) exponentially. We consider this process up to some timestep T .
2 Let Y0 ∼ N(0, I ). The goal is to construct a dynamical system Yt s.t.

Yt = XT−t ⇒ YT = X0 = X∗.
3 Then, the following SDE induces Yt = XT−t (reverse process):

dYt = βT−t(Yt + 2∇ log PT−t(Yt))dt +
√

2βT−tdBt .

4 YT is the distribution we desire, but we cannot obtain this as we do not know the Pt . Instead,
assume for each t we have ŝ(Yt , t), an estimator of the score function ∇ log Pt(Yt). Consider the

estimator Ŷt :
dŶt = βT−t(Ŷt + 2ŝ(Ŷt ,T − t))dt +

√
2βT−tdBt .

5 To generate xi ∼ P∗, set Ŷ
(i)
0

i.i.d∼ N(0, I ) ⇒ xi = Ŷ
(i)
T ≈ P∗, given ŝ is a nice estimator.
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Preliminaries: Diffusion model II

To obtain the nice estimator ŝ(Yt ,T − t), one trains a function (typically DNN) with ‘score
mathcing loss’. Fix some function class S (typically DNN); then, for some fixed ϵ > 0, define

ŝ = argmin
s∈S

1

n

n∑
i=1

∫ T

ϵ
Ext∼Pt (xt |(x0,i )i=1,...,n)

[∥∥s(xt , t)−∇ logPt(xt |(x0,i )i=1,...,n)
∥∥2] dt

≈ argmin
s∈S

Ex0∼P∗

[∫ T

0
Ext∼Pt (xt |x0)

[
∥s(xt , t)−∇ logPt(xt |x0)∥2

]
dt

]
.

Note we set the target as ∇ logPt(xt |x0) instead of ∇ logPt(xt); this trick is sometimes
called a score matching trick.
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Main Theorem

Let P to be a set of absolutely continuous probability measures on Ω with density f in a
Besov space Bs

p,q(Ω) and bounded below and above by C−1
f and Cf .

Theorem (Minimax optimality (NWB22))

For any estimator P̂ ∈ P constructed using n data Dn = (xi )i=1,...,n,

n−
s+1
2s+d ≲ inf

P̂∈P
sup

P∗∈P
EDnW1(P

∗, P̂).

Theorem (Diffusion models are nearly minimax optimal (OAS23))

For any δ > 0, if we train the diffusion model with the score estimator ŝ(x , t) ∈ Φ(L,W , S ,B) for

some L,W ,S ,B that depends on n, d , p, s,T and T ≥ (s+1) log n
mint βt (2s+d)

, then

sup
X0∼P∗∈P

EDnW1(X0, ŶT ) ≲ n−
s+1−δ
2s+d .

DNN diffusion model is ‘nearly’ (the gap is n
δ

2s+d ) minimax optimal.

In practice, the score loss blows up as t → 0, so often one uses clipping t ∈ [ϵ,T ] for some

ϵ > 0. The actual theorem is written w.r.t ŶT−ϵ, but for simplicity we assume ϵ = 0.
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Proof idea: Minimax optimality

Result is from (NWB22)[Theorem 3, Proposition 3].

Key idea: Observe the following calculation (MRCS10): for any h ∈ C1(Ω),∫
Ω
h(dP − dQ) =

∫ 1

0

d

dt

(∫
hdPt

)
dt =

∫ 1

0

∫
Ω
∇h · vtdPtdt

≤
(∫ 1

0

∫
Ω
∥∇h∥p dPtdt

)1/p (∫ 1

0

∫
Ω
∥vt∥q dPtdt

)1/q

≤ C1/p ∥∇h∥Lp(Ω) Wq(P,Q).

If P,Q ∈ P, one can choose the optimal h in LHS to get ∥fP − fQ∥B−1
1,∞

≲ W1(P,Q).

Plug-in P = P∗,Q = P̂, and
∥∥fP∗ − f

P̂

∥∥
B−1
1,∞

’s lower bound can be derived using the

standard Besov space minimax estimation technique (KP92).
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Besov function estimation

To prove the minimax optimality of the DNN diffusion model, we first need the performance
guarantee of DNN in general Besov function estimation.

Consider the problem of estimating f ∗ ∈ BBs
p,q(Ω) ∩ BL∞(Ω)(0,F ) for some F > 0, with the

data yi = f ∗(xi ) + ϵi with ϵi
i.i.d∼ N(0, σ2) and X ∼ P where supp(P) ⊆ Ω.

Theorem (DNN estimator of Besov function)

Let f̂ := argminh∈Φ(L,W ,S,B)

∑n
i=1 |yi − h(xi )|2 with L,W , S,B that depends on n, s, d , p. For all

f ∗ ∈ BBs
p,q(Ω)(0, 1) ∩ BL∞(Ω)(0,F ) with some F > 0,

EDn

∥∥∥f ∗ − f̂
∥∥∥2
L2(P)

≲ n−
2s

2s+d (log n)3.

The proof consists of two ingredients:

Approximation of Besov function by some DNN f̃ (may depends on f ∗).

Statistical learning theory to control the error between f̂ and any choice of the approximator f̃ .

Total error is bounded by the above two errors
∥∥∥f̂ − f̃

∥∥∥ , ∥∥∥f̃ − f ∗
∥∥∥.
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Key ingredient: Approximation I

Optimal approximation error: For sufficiently large N ∈ N, there exists L,W ,S ,B that
depends on N, d , s, p s.t.

sup
f ∗∈BBs

p,q (Ω)(0,1)
inf

f̃∈Φ(L,W ,S,B)

∥∥∥f̃ − f ∗
∥∥∥ ≲ N− s

d .

Basic strategy: two-stage approximation: Bs
p,q(Ω) ≈ B-spline functions ≈ Φ(L,W , S ,B).

B-spline functions:

Fix m and consider

Nm(xi ) :=

1[0,1] ∗ 1[0,1] ∗ · · · ∗ 1[0,1]︸ ︷︷ ︸
(m+1) times

 (xi ).

Nm(x) is a piecewise polynomial of the order m.
The following basis is called B-spline.

M
m,d
k,j

(x) :=
d∏

i=1

Nm(2ki xi − ji ).

One can think of j as a location parameter (like 0th Haar wavelet basis) and k as spatial resolution (like kth
Haar wavelet basis).
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Key ingredient: Approximation II

Bs
p,q(Ω) ≈ B-spline is established in (DP88).

B-Spline ≈ Φ(L,W , S,B) is from the following observations:

For some M > 0, write ϕ(0,M)(x) := σ(x) − σ(x − M) = M ∧ σ(x).
Observe Nm(x) has the form

Nm(x) =
1

m!

m+1∑
j=0

(−1)j
(
m + 1

j

)
(m + 1)m

(
ϕ
(0,1− j

m+1
)

(
x − j

m + 1

))m

.

First, we focus on approximating

(
ϕ
(0,1− j

m+1
)

(
x−j
m+1

))m

.

(Yar17) showed for some D ∈ N there exists ψ : RD → R ∈ Φ(L1,W1, S1, B1) for some L1,W1, S1, B1 that
depends on m and ϵ such that

sup
x∈[0,M]

∣∣∣∣∣∣∣∣∣∣∣∣
ψ

(
ϕ(0,M)

(
x

M

)
, . . . , ϕ(0,M)

(
x

M

))
︸ ︷︷ ︸

m times. Write this function as ψ ◦ ϕ(0,M)(x/M).

−
(
ϕ(0,M)

(
x

M

))m

∣∣∣∣∣∣∣∣∣∣∣∣
≤ ϵ

Therefore, the reasonable construction of the approximator of Nm(x) will be

f (x) =
1

m!

m+1∑
j=0

(−1)j
(
m + 1

j

)
(m + 1)m

(
ψ ◦ ϕ

(0,1− j
m+1

)

(
x − j

m + 1

))
.

Then, appropriately using ψ and f makes the form of M
m,d
0,0 (x).
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Statistical learning I

For any F > 0 and any function space F ⊆ BL∞(Ω)(0,F ), there exists the following
generalization gap type bound:

EDn

∥∥∥f ∗ − f̂
∥∥∥2
L2(P)

≤ C

 inf
f∈F

∥f ∗ − f ∥2L2(P)︸ ︷︷ ︸
≈∥f ∗−f̃ ∥2

+(F 2 + σ2)
logN(F , δ, ∥·∥∞)

n
+ δ(F + σ)︸ ︷︷ ︸

≈E∥f̂−f̃ ∥2

 .

Proof strategy:

1 Substitute f̂ to the closest δ-minimal covering of F and use the fact F ⊆ BL∞(Ω)(0, F ) to bound
the population risk by the empirical risk (Hardest part).

2 Bound the empirical risk in terms of the optimal recovery error: By using the fact that f̂ is ERM.

Set F = Φ(L,W ,S ,B) ∩ BL∞(Ω)(0,F ), and then the covering number analysis will give the
following:

logN
(
Φ(L,W ,S ,B), δ, ∥·∥∞

)
≤ 2SL log ((B ∨ 1)(W + 1)) + S log

(
L

δ

)
.

Set δ = 1/n, and in Step 1’s RHS.
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Statistical learning II

Apply (1). the approximation result to get inf f∈F ∥f ∗ − f ∥2L2(P) ≲ N− s
d , and (2). the

covering number bound obtained in Step 2 with specific L,W , S,B in the approximation
result.

Then, optimizing the RHS w.r.t. N will induce the claimed bound with N ≍ n
d

2s+d .
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DNN estimation to the score loss

Since we are estimating the score (log-derivative) uniformly over the time t, there is a slight
modification of the above result.

Naively, this seems like a d + 1 dimensional and s − 1 smoothness function estimation
problem. But, there is additional information for this problem: P(Xt |X0) ∼ N(mtX0, σ

2
t ) for

some mt , σ2
t .

∴ Pt(x) =
∫
P0(y)Kσ2

t
(∥x −mty∥2)dy where Kσ2

t
is a Gaussian kernel. Therefore, our

target ∇ logPt(x) also written as a fraction of Bs
p,q ∗ Kσ2

t
.

If we substitute Nm(2ki xi − ji ) in the B-spline by

Ej,k (xi , t) =

∫
1{0,1}(2

ki xi − ji )PN(mtyi ,σ
2
t )
(xi )dyi ,

Gaussian parts and Besov density parts separately controlled each other, and one can
approximate Bs

p,q ∗ Kσ2
t
by Ej,k (xi , t). One can do the similar procedure as the above with

this bases.

⇒ Population Score Loss of ŝ ≲ n−
2s

2s+d (log n)16
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Diffusion model proof: Key idea

Using the Besov space estimation result, one can show

sup
P∗

EDnTV (X0, ŶT ) ≲ n−
s

2s+d (log n)8.

W1 rate n−
s+1−δ
2s+d turned out to be faster. Why?

Key observation: Utilizing the smoothness of the Gaussian noise.
Note the score network s(Xt , t) does not have to be uniformly same over the time.
Observe s0 ≈ ∇Bs

p,q , while sT ≈ ∇N(0, I ).

Since N(0, I ) is very smooth, sT is much easier to approximate/estimate than s0.
∴ After the certain timestep t′, estimation error is expected to be much smaller.
Wrong but intuitive illustration:

d(P̂[0,T ],P
∗
[0,T ]) ≤ d(P̂[0,t′ ],P

∗
[0,t′ ])︸ ︷︷ ︸

non-smooth target

+ d(P̂[t′,T ],P
∗
[t′,T ])︸ ︷︷ ︸

smooth target (Gaussian score)

.

When d = TV , the ‘non-smooth’ term dominates, so cannot improve the DNN estimator rate. But
when d = W1, non-smooth part contributes less, so there is an improvement.
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Diffusion model proof: Detail I

1 For given s, r ∈ [0,T ], let Y
s
(r)t be a stochastic process s.t. Y

s
(r)0 = Pr and

dY
s
(r)t =

{
βT−t(Y

s
(r)t + 2∇ logPT−t(Y

s
(r)t))dt +

√
2βT−tdBt t ∈ [0,T − s],

βT−t(Y
s
(r)t + 2ŝt(Y

s
(r)t ,T − t))dt +

√
2βT−tdBt t ∈ [T − s,T ].

i.e., use the true score up to T − s and then use the estimated score from T − s.

Particularly, one can think of Y
0
(r)t ,Y

T
(r)t similar to YT−r+t , ŶT−r+t .

2 Our target: EW1(X0, ŶT ) ≤ EW1(Y
T
(T )T , ŶT ) + EW1(X0,Y

T
(T )T ).

3 First term: ŶT and Y
T
(T )T only differs in the initial distributions (N(0, I ) and PT resp.),

leading to ≲ TV (N(0, I ),PT ) ≤ exp(−βT ) (∵ reverse OU process).
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Diffusion model proof: Detail II

4 Second term:

Discretize [0,T ] by the partition made by tj = C jn
− 2−δ

2s+d for some j = 1, . . . , k = O(log n). Here

C is a constant that makes C kn
− 2−δ

2s+d = T . A certain tj will be t′ mentioned above.
Important: This interval is not ‘equi-length’. Smaller t has the smaller interval.

EW1(X0,Y
T
(T )T ) ≤

∑
j EW1(Y

j−1
(T )T ,Y

j
(T )T ).

Y
j−1

(T )T and Y
j
(T )T has the same initial distribution as well as the dynamics, except the

difference in the drift term of [tj−1, tj ].
Girsanov Theorem gives the KL bound of such processes in terms of the difference between drift
terms, and (omitting the complicated steps) leads to

Ex0
W1(Y

j−1
(T )T ,Y

j
(T )T ) ≲

√
tj log n

∫ tj

tj−1

Ext ,x0∼Pt ,P0
∥ŝ(xt , t) − ∇ log Pt(xt)∥2 dt+n

− s+1
2s+d .

Note the bound gets smaller when tj is small (corresponding to the Key Observation).
Plug-in the estimation error bound of the score loss (in the interval [tj−1, tj ]), and plug-in

tj = C jn
− 2−δ

2s+d to derive the desired value.
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Some Remarks for the proof

The extra term δ appears in W1 from optimizing the choice of the threshold t′.

In case of TV distance, one obtains the bound as in the above, but with tj part substituted
by O(1). So, one cannot tighten the bound when tj is small, so the error of non-smooth part
equally contributes.

One can think of this as ‘Mean-diff (≈ W1) ≤ Max-diff (≈ TV)’ type inequality.
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Summary

DNN diffusion model with score mathcing loss achieves almost minimax rate w.r.t. W1 (and
TV) distance.

The fundamental ingredient is from the minimax function estimation in Besov space.
Approximation theory to obtain the good approximator (B-Spline in Besov case).
Learning theory to bound the gap between estimator and the approximator.

The OU process structure of the diffusion model gives some advantage:
Target score has the same smoothness as the density.
As t → T , target score gets smoother.
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Limitations

How to actually train such a constraint neural network?
Can we reformulate the constraint into tractable ways, e.g., unconstraint optimization with
appropriate regularizer?
Constraints play a role in two parts:

1 Approximation: S, B enables to avoid the overfitting to the noise (≈ LASSO type regularizer).
2 Learning: S, B enables to bound the covering number, which controls the generalization bound.

It is not immediate how to avoid such constraints in the approximation stage: Relationship to weight
decay type penalty?
On the other hand, there are alternative approaches to obtain a generalization bound (e.g.,
Rademacher complexity) to avoid the constraint. Can we utilize those?
PAC (Bayes) type analysis for the specific algorithm?

Adaptivity
Constructing Φ(L,W , S,B) requires the prior knowledge on the regularity of the P∗; e.g., choices of
L,W , S,B require s, p. This makes the estimation non-adaptive.

Claims using ‘two’ DNNs at [0, t′] and [t′,T ] improves the rate. When to exactly? Can
ŝ(xt , t) be adaptive to t′?
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Thank You For Your Attention!
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