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Abstract

In this final report, I will review the minimax optimality of the diffusion model
proposed in Oko et al. [2023]. The key idea lies in the minimax estimation theory in
Besov space established in Donoho and Johnstone [1998], Giné and Nickl [2015],
Suzuki [2019]. By combining extension of Besov space result in Wasserstein space
[Niles-Weed and Berthet, 2022] and a novel approximation method, the paper
shows the specific structure in the diffusion model leads to the minimax optimal
bound. I will go over the sketch of proofs, and discuss strength, weakness, and
possible extension of this work.

1 Background

1.1 Main problem

Generative models Let P(X ) be a set of probability measures in X . Generative models aims to
solve the following problem: suppose one have Xi

i.i.d∼ P ∗ ∈ P(X ) for i = 1, . . . , n. Given these
data, is there an algorithm generating more samples Xi ∼ P ∗?

Among multiple algorithms for generative models, how one can say the certain algorithm is better
than the other? If generated samples from the certain algorithm are very close to samples in P ∗, then
such algorithm can be regarded as a good algorithm. To precisely establish this procedure, one can
bring back the classical statistical decision theory. Since we only work with data without knowing the
true distribution P ∗, what a generative model reproduces is in fact X̂i, an estimator of Xi. Therefore,
a statistical procedure to decide which estimator to use can directly be applied to this problem as well.

Minimax theory A minimax theory is one way of evaluating the performance of the estimator. In a
general statistical framework, one quantifies the performance of the estimator based on certain types
of ‘risk’ that the estimator have; an estimator of lower risk is more desirable. For example, in a linear
regression problem, one can argue an estimator with the minimum mean-squared-error (MSE) is an

ideal estimator. In this case, the risk functional will be R(θ, θ̂) := E
∥∥∥θ − θ̂

∥∥∥2.

One way to measure the complexity of the problem is by measuring the minimax risk. That is, given a
risk functional R(θ, θ̂), one can consider the following quantity:

inf
θ̂

sup
θ∈Θ

R(θ, θ̂).

One can interpret this quantity as follows: what is the risk of the most optimal estimator (inf θ̂ part)
that can minimize the risk in the worst case(supθ part)? This risk can be regarded as a lower bound
of the performance for this risk functional minimization problem, i.e., no estimator can do better than



this quantity. Particularly, if for some α > 0

n−α ≍ inf
θ̂
sup
θ
R(θ, θ̂),

then n−α is called a minimax optimal rate.

If there exists an estimator θ̃ which achieves the same rate of n with the minimax risk, i.e.,

sup
θ
R(θ̃, θ) ≍ n−α ≍ inf

θ̂
sup
θ
R(θ, θ̂),

then such θ̃ is called a minimax optimal estimator. One can think this estimator as the ideal estimator
at least for the sufficiently large n.

Goal One can ask the following question: in the case of generative model, for some reasonable
choice of risk R, is there an algorithm that guarantees the minimax optimal estimator? Oko et al.
[2023] answers this question by stating that a diffusion model, one of the most widely used generative
models nowadays, achieves the nearly minimax optimal rate when risk functional is chosen by either
total variation distance or Wasserstein-1 distance.

In this report, we will focus on Wasserstein-1 distance risk, and explain how a diffusion model
acheieves the minimax rate.

1.2 Preliminaries

Diffusion model For some target probability measure P ∗, suppose we are given only data Xi
i.i.d∼

P ∗. In generative models, we want to generate the estimator of samples X̂i that has a distribution
close to P ∗. A diffusion model generates X̂i by the following procedures:

1. Assume P ∗ to be an initial distribution of some Ornstein–Ulhenbeck (OU) process, i.e., for
X0 ∼ P0 = P ∗,

dXt = −βtXtdt+
√

2βtdBt.

Note Xt → N(0, I) exponentially. We consider this process up to some timestep T .

2. Let Y0 ∼ N(0, I). The goal is to construct a dynamical system Yt s.t. Yt = XT−t so that
YT = X0 = X∗.

3. Then, it is known the following SDE induces Yt = XT−t (reverse process):

dYt = βT−t(Yt + 2∇ logPT−t(Yt))dt+
√

2βT−tdBt.

4. YT is the random variable we desire, but we cannot obtain this as we do not know the Pt.
Instead, assume for each t we have ŝ(Yt, t), an estimator of the score function ∇ logPt(Yt).
Consider the estimator Ŷt:

dŶt = βT−t(Ŷt + 2ŝ(Ŷt, T − t))dt+
√
2βT−tdBt.

5. To generate X̂i ∼ P ∗, set Ŷ (i)
0

i.i.d∼ N(0, I). Then, X̂i = Ŷ
(i)
T ≈ P ∗, given ŝ is a nice

estimator.

To obtain a nice estimator ŝ, one find a function that minimizes the score matching loss, i.e., for some
fixed ϵ > 0 and a function class S,

ŝ = argmin
s∈S

1

n

n∑
i=1

∫ T

ϵ

Ext∼Pt(xt|(x0,i)i=1,...,n)

[
∥s(xt, t)−∇ logPt(xt|(x0,i)i=1,...,n)∥2

]
dt

≈ argmin
s∈S

Ex0∼P∗

[∫ T

0

Ext∼Pt(xt|x0)

[
∥s(xt, t)−∇ logPt(xt|x0)∥2

]
dt

]
.

(1)

Note we set the target as ∇ logPt(xt|x0) instead of ∇ logPt(xt); this trick is sometimes called a
score matching trick. The ϵ is introduced to stabilize the score loss, as the loss explodes as ϵ→ 0.
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Typically, S is set to be a deep neural network in practice. Here, for theoretical analysis we will
consider S to be a deep neural network (DNN) function class Φ(L,W, S,B) defined as follows:

Φ(L,W, S,B)(x) =
[(
W (L)(·) + b(L)

)
◦ σ · · · ◦ σ ◦

(
W (1)(·) + b(1)

)]
(x) (2)

where

• σ: ReLU activation function.
• L: Neural network depth.

• W : Neural network width, i.e., W (l) ∈ RW×W , b(l) ∈ RW for all l = 1, . . . , L.

• S: Sparsity parameter, i.e.,
∑L

l=1

[∥∥W (l)
∥∥
0
+
∥∥b(l)∥∥

0

]
≤ S.

• B: Norm constraint, i.e., maxl=1,...,L

[∥∥W (l)
∥∥
∞ ,

∥∥b(l)∥∥∞]
≤ B.

We want to note that this choice of DNN is mainly due to the theoretical tractability, and is quite
different to what we use in practice.

Besov space Before we move on to the main idea of the paper, we need some preliminaries regarding
the function estimation problem. This is because one can think of obtaining the estimator X̂i as
obtaining the estimator of the probability density function. In classical nonparametric estimation
theory, one cannot estimate the arbitrary free function, as one can construct any function that
interpolates the data perfectly. This perfect interpolation is not desirable, as it overfits the data and
cannot generalize the region outside the data. To this end, one usually impose a regularity restriction
on the target function class. One of the widely used function class in such purpose is a Besov space.

Let Ω = [0, 1]d be a d-dimensional unit cube. For f ∈ Lp(Ω), define the rth-modulus of smoothness
as follows:

wr,p(f, t) := sup
∥h∥≤t

∥∆r
h(f)∥Lp(Ω) ,

where ∆r
h(f)(x) :=

∑r
j=0

(
r
j

)
(−1)r−jf(x + jh) if x, x + h ∈ Ω, and 0 otherwise. For example,

∆1
h(f)(x) = f(x+ h)− f(x) and ∆2

h(f)(x) = f(x+ 2h)− 2f(x+ h) + f(x). Let r = ⌊s⌋+ 1,
and define a Besov semi-norm

|f |Bs
p,q(Ω) :=


[∫

Ω

(
wr,p(f,t)

ts

)q
dt
t

] 1
q

0 < q <∞,

supt>0
wr,p(f,t)

ts q = ∞.

If f satisfies ∥f∥Bs
p,q(Ω) := ∥f∥Lp(Ω) + |f |Bs

p,q(Ω) < ∞, then f is said to be in a Besov space
Bs

p,q(Ω). One can understand s behaves like a smoothness parameter, as in s-Sobolev space, and p
behaves like a integral parameter as in Lp space.

For q, it is less direct in this definition what is the role of q is. For the interpretation of q, an equivalent
definition using a wavelet decomposition may help. A wavelet theory gives the following basis
decomposition for the Lp(Ω) function f :

f =
∑
k∈Z

⟨ϕk, f⟩ϕk +

∞∑
j=0

∑
k∈Z

⟨ψjk, f⟩ψjk, in Lp, 1 ≤ p ≤ ∞

where ϕk denotes the father wavelet and ψjk denotes the mother wavelet at jth level. For more
information about the wavelet theory, I refer Giné and Nickl [2015][Chapter 4.2].

It is known that f ∈ Bs
p,q(Ω) is equivalent to the wavelet sequence norm of f

∥f∥Bs,W
pq

≡


∥{⟨f, ϕk⟩}k∥p +

( ∞∑
j=0

2qj(s+
1
2−

1
p ) ∥{⟨f, ψjk⟩}k∥qp

)1/q

1 ≤ q <∞

∥{⟨f, ϕk⟩}k∥p + sup
j>0

2j(s+
1
2−

1
p ) ∥{⟨f, ψjk⟩}k∥p q = ∞

being finite. Here, the interpretation of q is much clear. Note that
∥∥{⟨f, ψjk⟩}k

∥∥ can be interpreted
as a variation at j level, which intuitively means variation at very small local domain (precisely,
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2−j length cube). Note this term is controlled in total by q norm. Hence, q controls some kind of
aggregated amount of local variations of the function.

In sum, one can summarize the intuitive interpretation of Besov spaces as follows: Bs
p,q(Ω) works

similar to Sobolev space W s,p(Ω). q just gives a little freedom to W s,p(Ω), by allowing to finely
control the aggregated local variations. One can check as q gets larger the local variation can be
controlled in more loose way. Particulary, Bs

p,1(Ω) ↪→W s
p (Ω) ↪→ Bs

p,∞(Ω) and Bs
2,2(Ω) =W s

2 (Ω).

2 Main result: Minimax optimality of the diffusion model

Now, we are ready to introduce the main result. We will introduce two results: 1. the minimax optimal
rate of estimating a probability measure, and 2. the estimation error of the diffusion model generated
estimator. To this end, we define P to be a set of absolutely continuous probability measures on Ω
with a density f ∈ Bs

p,q(Ω) and 1/C ≤ f ≤ C for some C > 0.

2.1 Minimax optimal rate in Wasserstein distance

We first introduce the minimax optimal rate of probability measure estimator under the expected W1

distance risk R(P, P̂ ) := EDn
W1(P, P̂ ).

Theorem 2.1 (Minimax optimality [Niles-Weed and Berthet, 2022]). For any estimator P̂ ∈ P
constructed using n data Dn = (xi)i=1,...,n,

n−
s+1
2s+d ≲ inf

P̂∈P
sup
P∗∈P

EDn
W1(P

∗, P̂ ).

This theorem gives the lower bound of the minimax risk. Since there exists an estimator that achieves
this precise minimax rate [Niles-Weed and Berthet, 2022][Theorem 1], this lower bound is indeed
tight.

We provide a sketch of the proof:

Proof. This result is from Niles-Weed and Berthet [2022][Theorem 3, Proposition 3]. We decompose
the proof into the follow steps:

Step 1. A key idea is to observe the following calculation [Maury et al., 2010]: for any h ∈ C1(Ω),∫
Ω

h(dP − dQ) =

∫ 1

0

d

dt

(∫
hdPt

)
dt =

∫ 1

0

∫
Ω

∇h · vtdPtdt

≤
(∫ 1

0

∫
Ω

∥∇h∥p dPtdt

)1/p (∫ 1

0

∫
Ω

∥vt∥q dPtdt

)1/q

≤ C1/p ∥∇h∥Lp(Ω)Wq(P,Q).

Here vt is a vector field induced from the continuity equation ∂tPt = −div(Ptvt) and C is a density
upper bound. For the second equality one used the integration by parts, and for the last inequality one
used a dynamical formulation of the optimal transport.

Step 2. If P,Q ∈ P , one can choose the optimal h to make the bound desirable. Particularly, let
h =

∑
k κkϕk+

∑
j,k λjkψjk. Then, if ∥κ∥ℓp ≤ 1 and ∥λ∥ℓp ≤ 2−j+dj(1/2−1/p), then ∥∇h∥Lp ≲ 1

[Niles-Weed and Berthet, 2022][Lemma 7].

Step 3. Plug-in P = P ∗, Q = P̂ . Since P̂ , P ∗ ∈ P , one can write dP ∗, dP̂ as a wavelet expansion,
i.e., dP ∗ =

∑
k α

∗
kϕk +

∑
jk β

∗
jkψjk and dP̂ =

∑
k α̂k +

∑
j,k β̂jkψjk. Plug-in these values and h

to the LHS of Step 1. Up to here, one obtains

C−1/p(∥α∗ − α̂∥ℓp + sup
j

2−j+dj(1/2−1/p)
∥∥∥β∗

j − β̂∗
j

∥∥∥
ℓp
) ≲Wq(P

∗, P̂ ),

which is Niles-Weed and Berthet [2022][Proposition 3].
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Step 4. As in classical minimax estimation theory in Besov space, apply Assouad’s Lemma for
EW1(P

∗, P̂ ), i.e., decompose the minimax risk into the properly chosen well-separated finite cov-
erings of Bs

p,q(Ω). Then, use Step 3’s result to obtain the lower bound of W1 distance between the
center of coverings, which turns out to be written in terms of Hamming distance. Then, one can
optimize the bound by choosing the optimal number of levels J , which is J ≍ n1/(2s+d). This choice
of J will give the claimed bound on n. See [Giné and Nickl, 2015][Section 6.3.1] and Kerkyacharian
and Picard [1992] for the general procedure and [Niles-Weed and Berthet, 2022][Section 4.3] for the
precise quantities.

The key ingredients of the proof are three: a dynamic formulation of Wasserstein distance (Step 1),
wavelet representations of the density (Step 2, 3), and Besov space minimax estimation theory (Step
4).

The next theorem shows the estimation error of the estimator generated by the diffusion model.
Theorem 2.2 (Diffusion models are nearly minimax optimal [Oko et al., 2023]). For any fixed δ > 0,
if we train the diffusion model with scores being Φ(L,W, S,B) for some L,W, S,B that depends on
n, d, p, s, T , then

sup
X0∼P∗∈P

EDnW1(X0, ŶT−T0) ≲ n−
s+1−δ
2s+d

whenever T0 = n−
2(s+1)
2s+d and T ≥ (s+1) logn

mint βt(2s+d) .

This theorem together with the minimax bound in Theorem 2.1 indicates that a DNN based diffusion
model is ‘nearly’ (the gap is n

δ
2s+d ) minimax optimal. The key thing to take into account here is the

plural scores. This indicates we will use a multiple scores, and this in fact gives some improvements;
a precise will be discussed later. The T0 can be regarded similar to 0; it is to avoid the unstable
behavior of the score matching loss near the 0.

Before going into the proof, we want to first make a remark about the key idea of the proof, which
utilizes the structure of the diffusion model very wisely. Heuristically speaking, the key argument is
as follows: the process Xt evolves from the target distribution to Gaussian white noise. The score
function needs to approximate the score of such target. When t is small, the target would be Besov
function spaces, and we may not expect a better performance than the minimax rate. However, as t
gets larger, our target becomes standard Gaussian, which is very smooth. Therefore, one may expect
the improvement when t is sufficiently large. When one uses total variation distance, Besov function
estimation error dominates the entire error, but when one uses Wasserstein-1 distance, the error is
averaged, and some improvements can be made. We illustrate this more rigorously after the proof.

Again, we provide a sketch of the proof:

Proof. Step 1. A key idea is to consider the following stochastic process: for given s, r ∈ [0, T ], let
Y

s
(r)t be a stochastic process s.t. Y

s
(r)0 = Pr and

dY
s
(r)t =

{
βT−t(Y

s
(r)t + 2∇ logPT−t(Y

s
(r)t))dt+

√
2βT−tdBt t ∈ [0, T − s],

βT−t(Y
s
(r)t + 2ŝt(Y

s
(r)t, T − t))dt+

√
2βT−tdBt t ∈ [T − s, T ].

i.e., uses the true score up to T − s and then use the estimated score from T − s. Particularly, one
can think of Y

0
(r)t, Y

T
(r)t similar to YT−r+t, ŶT−r+t.

The reason we consider such stochastic process is because one can bridge the difference between true
process Yt and Ŷ ; this process resembles Yt up to T − s and resembles Ŷt from T − s.

Using this process, one can write the estimation error as follows:

EW1(X0, ŶT−T0
) ≤ EW1(X0, XT0

)︸ ︷︷ ︸
:=(i)

+EW1(Y
T−T0

(T − T0)T−T0
, ŶT−T0

)︸ ︷︷ ︸
:=(ii)

+EW1(XT0
, Y

T−T0
(T − T0)T−T0

)︸ ︷︷ ︸
:=(iii)

.

We will bound the each term separately.

Step 2. We first show (i) ≲
√
T0. Recall by the property of OU process, one has Xt|X0 ∼

N(mtX0, σ
2
t ), where mt = exp

(
−
∫ t

0
βsds

)
and σ2

t = 1 − exp
(
−2

∫ s

0
βsds

)
. Particularly, 1 −
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mt ≍ min {1, t} and σt ≍ min
{
1,
√
t
}

. Then, for Z ∼ N(0, I) observe the following:

(i) = EX0,XT0
∥X0 −XT0

∥ ≤ EX0
E [∥X0 −XT0

∥ |X0] = E ∥X0 −mT0
X0 + σT0

Z∥

≤ (1−mT0
)E ∥X0∥+ σT0

E ∥Z∥ ≤ (1−mT0
)
√
d+ σT0

√
d ≲

√
T0

given T0 ≍ n−O(1).

Step 3. We next bound (ii) ≲ exp (−mint βtT ). To this end, observe ŶT−T0
and Y

T−T0
(T −

T0)T−T0
only differs in the initial distribution, N(0, I) and PT respectively. Using the fact that the

OU process converges to N(0, I) exponentially with respect to t in KL-divergence, and from the
setting that Ω is an unit cube, one obtains

(ii) ≲ TV (N(0, I), PT ) ≤
√
2DKL (PT ∥N(0, I)) ≲ exp

(
−min

t
βtT

)
.

Step 4. We lastly bound (iii), which is the most complicated part.

Step 4-1. Consider partitioning [T0, T − T0] by tj = cjn−
2−δ
2s+d for some j = 1, . . . , k = O(log n).

c is a constant chosen to satisfy tk = T − T0 for the given k. Note that the partition is not equi-
partitioned. For smaller t the interval is smaller. This choice of the partition enables us to control the
error in small t region.

Step 4-2. One can decompose C as follows:

(iii) ≤
k∑

j=1

EW1

(
Y

tj−1
(T − T0)T−T0 , Y

tj
(T − T0)T−T0

)
.

Observe Y
tj−1

(T − T0)T−T0
and Y

tj
(T − T0)T−T0

have the same initial distribution as well as the
dynamics, except the difference in the drift term in [tj−1, tj ]. Using this property, one can derive the
following bound:

EX0
W1

(
Y

tj−1
(T − T0)T−T0

, Y
tj
(T − T0)T−T0

)
≲

√
tj log n

∫ tj

tj−1

EX0
∥ŝj(Xt, t)−∇ logPt(Xt)∥2 dt+ n−

s+1
2s+d .

(3)

Since the derivation of this bound is very technical, I will just explain the heuristic idea about
the bound. Note the Wasserstein-1 distance is a averaged transport distance. Therefore, it can be
characterized as ‘Total Mass to Transport × Total Distance Transported’. Using the fact we are in
the bounded domain Ω, one can show ‘Total Mass to Transport’ is bounded the half of the Total

variation distance between two processes, which is bounded by
√∫ tj

tj−1
·dt term. On the other hand,

using the fact that these two processes only differs in the drift term, one can show ‘Total Distance
Transported’ is O(

√
tj log n) with the probability at least 1− n−O(1). The final additive term comes

from considering the probability n−O(1) part with total variation bound 1.

This bound represents that, as tj → 0, while score matching gets more difficult (due to the lack of
regularity compared to Gaussian), its contribution to the Wasserstein-1 error is reduced. Also, this
bound enables us to convert the W1 bound into the score function estimation error bound.

Step 4-3. The estimation error of the trained score ŝj ∈ Φ(L,W, S,B) at [tj−1, tj ] has the following
bound:∫ tj

tj−1

EX0 ∥ŝj(Xt, t)−∇ logPt(Xt)∥2 dt ≲
(
n−

2(s+1)
2s+d log n+ t

− d
2

j n
(δ−2)d−4s
2(2s+d) (log n)8

)
. (4)

This comes from the variant of the Besov function estimation theory. The derivation of this bound is
deferred to Theorem 2.4.

Step 4-4. Plug-in Equation (4) to Equation (3), and recall k ≍ log n. Then some algebraic calculations
lead to

(iii) ≲ n−
s+1−δ
2s+d .
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Step 5. In sum, we obtain

EW1(X0, ŶT−T0) ≲
√
T0 + exp

(
−min

t
βtT

)
+ n−

s+1−δ
2s+d .

Then, the chosen T0, T induce the desired bound.

Remark 2.3.

1. When one uses the total variation distance instead of Wasserstein-1 distance, the
√
tj

term does not appear in Equation (3). Therefore, as in W1 case, the score matching gets
more difficult as time becomes the small, but unlike W1 case, its contribution cannot be
controlled by partition size. Therefore, the score estimation error directly transferred to the
TV distance rate, and one achieves the nearly minimax rate of Besov function estimation
problem [Oko et al., 2023][Theorem 5.1]. This is worse than W1 distance. The reason TV
is worse than W1 is that TV is a supremum based distance while W1 is average based
distance.

√
tj log n term appears when taking an average by total distances moved in W1.

One can think this as ‘Mean ≤ Max’ type inequality.

2. The term δ can be any δ > 0, but it cannot be 0 to obtain the bound in Equation (3). While
the smaller δ makes the bound tighter, smaller δ implies one needs a finer partition, and
therefore more score estimators; see tj term has a dependency on δ. Therefore, there is a
trade-off between the tighter bound and computational costs.

We again summarize the key idea of the proof. The diffusion process structure becomes favorable if
one can convert the error between distributions to the differences between either initial distributions or
drift terms. Therefore, by introducing the suitable random process that can bridge the target process
and the estimated process, one can convert the error by initial distributions or drift terms, and from
here known theories are applicable in a nice manner.

2.2 Estimation error bound of the score estimator

Lastly, we derive the estimation error bound of the score estimator, stated in Equation (4).

Theorem 2.4 (Score estimator error [Oko et al., 2023]). For suitably chosen L,W, S,B which
depends on n, d, s, δ, tj , the score estimator ŝj ∈ Φ(L,W,S,B) defined by Equation (1) at [tj−1, tj ]
satisfies∫ tj

tj−1

EX0
∥ŝj(Xt, t)−∇ logPt(Xt)∥2 dt ≲

(
n−

2(s+1)
2s+d + t

− d
2

j n
(δ−1)d−2s

2s+d (log n)8
)
.

Before moving on to actual proof, we introduce the general strategy to obtain the function estimation
error bound when one has the estimator f̂ for the target f . The general procedure decomposes into
two: 1. Approximation stage, and 2. Statistical learning stage.

In approximation stage, one tries to obtain the ideal approximation error between two function classes,
i.e.,

sup
f∈Bs

p,q(Ω)

inf
f̃∈Φ

∥∥∥f̃ − f
∥∥∥2
L2(Px)

.

One can interpret this error as follows: since one takes the infimum first, given a target f , one tries to
find the best approximator in Φ that approximates the target well. Then, by taking the supremum, one
look at the worst choice of the target. In sum, one seeks for the worst error that the ideal approximator
has. Note this stage does not involve any stochasticity. In this stage, Banach geometry theory will
be the main tool to obtain the bound. Particularly, one typically write f as some N -term basis
expansion with suitable bases. Then, we next check how an estimator class can approximate such
basis expansion. In a simple form, one typically tackles approximation problem by showing ‘target
function class ≈ N -term basis expansion ≈ estimator class’.

In statistical learning stage, heuristically speaking, one decomposes the total error as follows:

sup
f

EDn

∥∥∥f̂ − f
∥∥∥ ≤ sup

f

∥∥∥f − f̃
∥∥∥+ sup

f
EDn

∥∥∥f̂ − f̃
∥∥∥ .
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The first term corresponds to the approximation error. Therefore, one aims to control the second term
in statistical learning part. Since

∥∥∥f̂ − f̃
∥∥∥ is a stochastic process w.r.t. n, empirical process theory is

used to control the supremum of this process. In practice, one may use squared norm rather than plain
norm which does not have a triangular inequality, but similar decomposition of the bound is used.

Once one obtains both approximation and statistical learning, in the total error one optimizes N , a
number of basis, by the n, a number of data. This gives the total estimation error in terms of n.

Keeping this overall strategy in mind, we will proceed with the sketch of the proof.

Proof. Step 1. We obtain the approximation result here. We will briefly go over the following
statement [Oko et al., 2023][Lemma 3.6]:

Let N ≫ 1 and tj−1 ≥ N−(2−δ)/d/2. Then, there exists s̃ ∈ Φ(L,W, S,B) for some L,W,S,B
that depends on N such that for all t ∈ [tj−1, tj ]

EXt
∥s̃(Xt, t)−∇ logPt(Xt)∥2 ≲

1

σ2
t

N− 2(s+1)
d .

Here, N can be interpreted as taking a N -terms basis expansion of the Besov function. Instead of
rigorous proof, we just heuristically explain the key idea of the proof here.

First, before go into the score function approximation problem, assume we are only in a plain Besov
function estimation problem. In this case, so-called B-spline functions turned out to be a suitable
choice of basis [Devore and Popov, 1988], i.e., Bs

p,q ≈ B-spline. To construct a B-spline function,
one consider the following m order piecewise polynomial:

Nm(x) =

1[0,1] ∗ · · · ∗ 1[0,1]︸ ︷︷ ︸
(m+1) times

 (x).

Then, a B-spline function is written as follows:

Mm,d
k,j (x) :=

d∏
i=1

Nm(2kixi − ji).

Suzuki [2019] showed this function can be approximated well by Φ(L,W, S,B). The idea comes
from Yarotsky [2017], which showed a product function

∏
i xi can be approximated well by Φ. In

fact, one can write Nm as a linear combination of product functions, and Mm,d
k,j is a product function

of Nm. Therefore, by applying product function approximation repeatedly, the approximation
Φ(L,W, S,B) ≈ B-spline can be shown. Here, the choice of L,W, S,B depends on N, d, s.

Aggregating two approximation results Bs
p,q ≈ B-spline ≈ Φ, the rate w.r.t. N can be derived for the

plain Besov functions; the precise rate in this case is N− 2s
d .

Now, we move to the score approximation problem. At glance, if f ∈ Bs
p,q(Ω), one may expect

∇ log f to have d + 1 dimension (includeing the time domain) and s − 1 smoothness; it seems
like we might get a weaker bound. However, here, the unique structure of the diffusion model, the
combination of OU process and score loss, turned out to be effective. To observe this, first notice
due to the OU process structure, P (Xt|X0) ∼ N(mtX0, σ

2
t ) for some mt and σt (which was in fact

introduced in the above). This enables us to write Pt(x) =
∫
P0(y)Kσ2

t
(∥x−mty∥2)dy where K

is a Gaussian kernel. Then, the score ∇ logPt(x) can be also written as a fraction of Bs
p,q ∗Kσt

.

From this observation, one can naturally extend the plain Besov function approximation method to
this setting: substitute the role of Mm,d

k,j in the plain Besov approximation to

Em,d
j,k (x, t) =

d∏
i=1

∫
Nm(2kixi − ji)PN(mtyi,σ2

t )
(xi)dyi.

This looks very natural extension of plain Besov function approximation to this score function
approximation. This intuition turns out to be true. From here, one can proceed with the similar
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technique in Besov function approximation problem to derive the desired bound. Again, to control
the approximation error we have the precise quantity of L,W, S,B with respect to N, d, s.

Step 2. Now, we obtain the similar statement to the total error decomposition as discussed in the
above. Particulary, Oko et al. [2023][Theorem C.4] gives the desired result: if ŝ is an score estimator
defined by an empirical risk minimizer, then for all η > 0

EDn∼P0

∫ tj

tj−1

EXt∼Pt ∥ŝ(Xt, t)−∇ logPt(Xt)∥2 dt ≤

2 inf
s̃∈Φ

∫ tj

tj−1

EXt∼Pt ∥s̃(Xt, t)−∇ logPt(Xt)∥2 dt+
2c

n

(
37

9
logN(L, ∥·∥L∞(Ω) , η) + 32

)
+ η.

Here, L =
{∫ tj

tj−1
EXt

∥s(Xt, t)−∇ logPt(Xt|X0)∥2 dt | s ∈ Φ(L,W, S,B)
}

is a function space
for the loss function, and N(L, ∥·∥L∞ , η) is a covering number. This bound can be derived using a
similar technique in Schmidt-Hieber [2020][Lemma 4]. Since this part is not a main contribution of
this paper, we omit the explanation of this bound.

Step 3. Plug-in the approximation rate N− 2(s+1)
d , η = n−

2(s+1)
2s+d and the covering number bound

of logN(L, ∥·∥L∞ , η) ≲ SL log
(

LWBn
η

)
which is derived in Oko et al. [2023][Lemma C.2]

whenever ∥s∥L∞ ≲ log n. This covering number bound is derived from the fact that ReLU activation
was used, so that one can apply Lipschitz continuity repeatedly. Since L,W,S,B is determined in
terms of N from Step 1, we can write this total error in terms of n and N . Lastly, one optimizes the
choice of N with respect to n, yielding the desired bound.

Remark 2.5. In Step 1, the approximation stage, we observed the score approximation problem can
be written as approximating the function of the form Bs

p,q ∗Kσt
. one can think of this approximation

being almost equivalent to approximating Bs
p,q and then take a smooth Gaussian convolution.

Therefore, one does not have to deal with d+ 1 dimension and s− 1 smoothness, but just deal with d
dimensional s smoothness problem; in fact, by taking a convolution with Gaussian kernel we gain
additional smoothness, and this is revealed in the bound: score approximation bound N− 2(s+1)

d

turned out to be faster than N− 2s
d .

The novelty of the proof comes from considering some modification to the B-spline basis; the authors
refer it as diffused B-spline basis. This modification to B-spline basis was doable due to the Gaussian
conditional distribution formulation which comes from OU process structure.

3 Strength and weakness of the paper

I would like to summarize the key strength of Oko et al. [2023] as follows:

1. Use of unique structure of diffusion models: The diffusion model differs from other types
of generative models (e.g., GAN, VAE) in the sense that diffusion model ‘incrementally’
add/remove noises; other types of generative models rather directly transform the noise.
Diffusion models turned out to perform much better than other models, while it was not
clear why this specific structure of diffusion model helps. In this proof, one can find the
advantage of this incremental noise addition/removal: Equation (3) shows by incrementally
adding the noise, by choosing the score differently for each partition, one can control the
‘non-smooth’ target function error part small. This gives one possible explanation why
incrementally using the noise is better than directly transforming the noise.

2. Novel bases approximation for score approximation: Authors used the favorable property
of the score function that it can be written as a convolution between Besov function and
Gaussian kernel, and constructed unique basis that is perhaps most suitable to the score func-
tion class. This modified basis is tailor-made to OU process structure and gives additional
advantage on the rate. The fact DNNs can approximate this tighter basis can also be another
possible answer why diffusion models outperform other generative models.

3. Use of OU process structure: The technique of introducing some bridge stochastic processes
and bound the distance using either deviation from the initial distribution or drift term was
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new to me. This seems like very nice idea to apply in general when one wants to deal with
more general diffusion processes.

That said, I found some limitations of the paper:

1. The structure of Φ(L,W, S,B): Their theory crucially relies on the structure of
Φ(L,W, S,B) used in Yarotsky [2017]. However, This function class hard to use in practice,
as one have to solve some constraint optimization, particularly with S andB. This constraint
works in two parts. In approximation stage this constraint avoids some overfitting to the
noise. In statistical learning stage, this constraint enables covering number bound to hold. I
believe this kind of constraint can be avoided by adding some kind of explicit regularizer
or thresholding methods, which have been studied a lot in nonparametric statistics. These
alternative approaches are more desirable in practice as these are easier to implement.

2. Adaptivity: The optimal choice of L,W, S,B, T in this paper relies on s, the smoothness
parameter of the target distribution. In practice this quantity is unknown. In this regard,
the DNN estimator is not adaptive; we may not expect such performance when we do not
know the smoothness parameter s. Bayesian methods or boosting type methods can be one
alternative to think of to overcome this problem.

4 Discussions

Overall, the paper nicely deals with the theoretical property of diffusion model estimators. In
particular, their proof gives one potential answer why diffusion models outperform other types of
generative models: fine partition and Gaussian convolution formulations enable DNNs to utilize the
additional smoothness of the Gaussian noise to obtain the minimax optimal bound.

On the other hand, in a practical point of view, their estimator may not be tractable; it is unclear
diffusion models used in practice work in a same manner, as they are different estimators to the
proposed estimator in the paper. In addition, their estimator is not adaptive, opening the question
whether one can obtain the adaptive estimator in this generative model setting.
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