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Main problem: minimax estimation UNIVERSITY

Suppose we are given n noisy samples of a function f:
yi=f(t)+e, i=1...,n 1)

with t; = ﬁ € [0,1] and €; ~ N(0,02). Assuming f belongs to a certain smoothness class F, can

we find an estimator fdepending on data y1,...,yn such that f minimizes the risk

1
7 2
IE/O (F(t) — £(t))" dt. (2)

Definition: Minimax risk

1
:=inf su f(t) — 24t
R(n, F) := Fffeg__IE/o (F(t) — F(£))dt 3)

s

This talk: We consider the smoothness class of Besov spaces Bp7q,

to the above problem.

and give a quantitative answer
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Besov Spaces

Besov spaces can be defined in various ways.

@ Moduli of Smoothness
o Wavelet Coefficients
o Low-Frequency Approximations

o Littlewood-Paley Theory
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Definition by Moduli of Smoothness

UNIVERSITY

Let A} (f)(x) be the r difference defined by

APO) =3 () (1 F G+ kh). (4)

k=0

Let A be subinterval of R. For f € LP(A),1 < p < oo, the rth modulus of smoothness is defined
by
wi(f,t) = wi(f,t,p) = sup HA;')fH . t>o0. (5)
0<h<t P
Given s > 0 and let r > s be an integer. For 1 < g < 00,1 < p < 00, the Besov space is defined
by
FELP(A): Flgs, = Fll, +|Flez coer 1< p< o0,
Bpg = Bpg(A) = (6)
€ CulA) < I, = IFllos +|lg,<o0r P = o0,

where

1
ert)th 7
I [ ] t ) 1< g <o,

su wr(f,t) _
p e, qg=o00
t>0

(@)

|flas, = IflBs,(a) =

is the Besov seminorm.
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Multiresolution Approximation of L?(RR)
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Definition ¢ € L2(R) is the scaling function of a multiresolution analysis of L2(R) if it satisfies the
following conditions

o The family {¢(- — k)}kez is an orthonormal system in L2(R); that is
<o(- = k), o — 1) >= 0k,
@ The linear spaces

Vo = {f(x) = Z ckp(x — k), {ck}kez Z ¢ < oo},

k€EZ kEZ
Vi :{f(2x) :fe VQ},...7
Vi = {f(2x): f € W},...,
are nested; that is,
VoCcViCcWVaC...
e Uj>oV; = L2(R).
Then, . .
Vj = span{¢jc(x) := 22¢(2x — k)2 (8)
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A Wavelet System

Since Vy C Vi, the space Vj can be defined by
Vi = Vo [<3) Wo (9)

where W, is the orthogonal complement of Vg in V;.
Since the spaces V; are nested,

Jj—1
Vi=Wod <@ Wz>, Wy =V 0V, (10)
=0

Let K;(f) be the orthogonal L2-projections of f € L? onto V;, which is defined by

j-1
Ki(f) = Ko(f) + Z the projections onto W, (11)
£=0
where
Ko(F)(x) = D < bur £ > (%), (12)
keZ

and 6i(x) = (x — ).
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A Wavelet System

Find basis functions that span the spaces W,
Assume that there exists a fixed 1 € L?(R) such that, for every £ € NU {0},

(e :=220(2°() — k) - k € 2} (13)
is an orthonormal set of functions that spans W,.
@ Haar system: if ¢ = 1o 1] the Haar wavelet is ¢ = ]1[0 1= ]l(l e
'3 3

The projection of f onto W is

Z < Yk, £ > Yok (14)

keZ

Therefore, the projection Kj(f) of f onto V; is

Ki(F)(x) =D < bjp, f > dju(x) (15)
kEZ
j-1
=D <> )+ DD <k, f > k() (16)
kez =0 kez.
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A Wavelet System AFI ‘ ?E:I%AESR‘;&?M

Since Uj>0 V] is dense in L2,
oo
’=va <EB W@>. (17)
£=0

Hence,
{p(x — k),2¢2p(2x — k) : k € Z,¢ € NU {0}} (18)

is an orthonormal wavelet basis of the Hilbert space 2.
Let the scaling function ¢x(x) = ¢(x — k) be of the first wavelet ¢_1,. This implies that we can
abbreviate the wavelet basis as {1 }. Hence, every f € L2 has the wavelet series expansion

F= <o f>ok(x)+D D> <t > bu(x)

kEZ £=0 kE€Z

=D < b >E0)+ DD < e f > pei(x)

keZ k€Z £=0

=D > <tu > Yu(x). (19)

0>—1kez
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S-Regular Wavelet Bases

Definition A multiresolution wavelet basis
{k = d(x — k), o = 2°/29(2"(x) — k) : k € Z,£ € NU{0}}

of L2(R) with the projection kernel K(x,y) = 3 é(x — k)¢(y — k) is said to be S-regular for
kEeZ
some S € N if the following conditions are satisfied:

o [p(u)utdu=0ve=0,1,...,5—1, [pé(x)dx =1, and for all v € R,
/K(v,v—f—u)du:l,/K(v,v—&-u)uzdu:OVZ:1,...,5—1,
R R

o > [p(x — k)l € L=(R), > |(x — k)| € L*(R), and
kEZ kEZ
o For k(x,y) equal to either K(x,y) or > 9(x — k)Y(y — k),

sup |k(v, v — u)| < c®(ez]u]), for some 0 < c1, 2 < oo and every u € R,
veR

for some bounded integrable ¢ : [0, 00) — R such that [ |u]® & (|u])du < oo.
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Definition by Wavelet Coefficients

We will use a wavelet basis of regularity S > s, S € N satisfying ¢,% € C5(R) with D¢, D54
dominated by some integrable function. Starting from the wavelet series

F=> <éuf>d+Y. > <tuf>u, inLP,1<p< oo, (20)

keZ €=0 kE€Z

of f € LP(R)(p < o0) and of f € Cy(R)(p = o0). The idea is to use the decay, as { — oo, of the
LP norms

20 < Fy ek >l

T~

1
~ 272

LP

D < ook > bk
P

to describe the regularity of a function f.
Fot 1< p<o00,1<g<00,0<s<8S, we set
P .
oW _ fEL(]R{).HfHB;aw<oo, 1< p<oo, (1)
P Fe GulR): Ifllgow < o0, p=oo,
pq

with wavelet-sequence norm, given, for s € R, by

X Lql(s+i-1) 1/a
(< .o >}ku,,+(22 19 (< ., b >}kuz) . 1<q<oo
1l ggw = ZZO@( +3-1)
" {< f, ¢k >}ka+§gP02 TR {< ek >l q=oc.

(22)

Li, Loesatapornpipit, Park, Park (TAMU) Minimax estimation in Besov spaces



TEXAS A&M

Wavelet UNIVERSITY

Battle-Lemarie

Haar Wavelet Meayer
[ [ 6
4 4 4
2 2 2
0 0 0
2| -2| -2
-4 -4 -4
-6 -6 -6
02 04 06 OB 02 04 06 0B 02 04 06 OB
D4 Wavelat S8 Symmiat €3 Coiflet
[ 8 &
4 4 4
2 2 2
[ [ 0
-2 -z -2
-4 -4 -4
-6 -6 -6
02 04 06 0B 02 04 06 0B 0z 04 06 OB

Minimax estimation in Besov spaces




Main Theorem AFI ‘ ?EZ?%;!&ESR‘;&?M

Theorem (Donoho-Johnstone '98)

Let F = BB; q([O,l])(Ov 1) be a unit ball in the Besov space By ,, where
1
s>=, 1<pg<oc or s=p=gq=1 (23)
p
= 2
Let R(n, F) = infzsupsexEp, ||f — f ) denote the minimax risk from observations and let

Ri(n, F) denote the minimax risks when the infimum is restricted to be linear in the data (y;).
Here, Dn = (xi, f(xi) + ni)i=1,....n With x; "9 P an uniform measure over [0,1] and
ni i N(0,02). Then,

@ Minimax rate:

_ 25 22y 1 1
R(n,F) = n~ 2st1 Ri(n, F) =< n 2H-27  ~:= 5~ e

@ Optimality of the wavelet shrinkage estimator: If p < q, there exists a wavelet estimator with
a proper thresholding f such that

sup Eo, |7 - ”H;(Px) S R(n, F)(1+ o(1)).
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Preliminaries: Minimax (lower nd techniques U N 1 Q ESRQ?M

General reduction principle via multiple hypothesis testing [Giné-Nickl] Set
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Preliminaries: Minimax (lower)-bound techniques

General reduction principle via multiple hypothesis testing [Giné-Nickl] Set

@ F compact = 3y, ..., fyy € F such that {B(fj, m):j=1,..., N} covers F and separation hypothesis holds:
16 — fill > 2r for Wj # .
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Preliminaries: Minimax (lower)-bound techniques

General reduction principle via multiple hypothesis testing [Giné-Nickl] Set

@ F compact = 3y, ..., fyy € F such that {B(fj, m):j=1,..., N} covers F and separation hypothesis holds:
16 — fill > 2r for Wj # .

@ Step 1 and Chebyshev's inequality imply:
—~ —~ 1 -~ 2
inf max Pr [Hf - ;;H > r,,} < inf sup Pf [Hf - f” > rn] < = inf sup Ef Hf - f“
Fi=l,.. N ffer 2 ffeF

Notation: probability measure Py is relative to the Gaussian distribution {g(t;) + ¢; : i =1,...,n}.
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Preliminaries: Minimax (lower)-bound techniques

General reduction principle via multiple hypothesis testing [Giné-Nickl] Set

@ F compact = 3y, ..., fyy € F such that {B(fj, m):j=1,..., N} covers F and separation hypothesis holds:
16 — fill > 2r for Wj # .

@ Step 1 and Chebyshev's inequality imply:

-~ —~ 1 P 2
. oz . _ < 1 _
|r;Af max N]P’,}, [Hf ﬂH > r,,} < inf sup Pr [Hf f” > rn] < inf sup Ef Hf f“

j=1,..., f feF ry f fer
Notation: probability measure Py is relative to the Gaussian distribution {g(t;) + ¢; : i =1,...,n}.
© Set ji = argmin; ||f; — f||. Then
Vi=1,.. N PBp(in £)) < Py (Hff £l < Hff gH)
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Preliminaries: Minimax (lower)-bound techniques

General reduction principle via multiple hypothesis testing [Giné-Nickl] Set

@ F compact = 3y, ..., fyy € F such that {B(fj, m):j=1,..., N} covers F and separation hypothesis holds:
16 — fill > 2r for Wj # .

@ Step 1 and Chebyshev's inequality imply:

—~ —~ 1 -~ 2
inf max Pr [Hf - ;;H > r,,} < inf sup Pf [Hf - f” > rn] < = inf sup Ef Hf - f“
Fi=l. N ffer ry f feF

Notation: probability measure Py is relative to the Gaussian distribution {g(t;) + ¢; : i =1,...,n}.

© Set ji = argmin; ||f; — f||. Then

Vi=1,.. N PBp(in £)) < Py (Hffg*

<[7=sl)

@ By separation hypothesis and triangle inequality on the preceeding event,
Vj# s ra < IIF—FIl
Conclude that .
Vi=1..o N PeGe £0) < B (IF = £ > m)
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Preliminaries: Minimax (lower)-bound techniques

General reduction principle via multiple hypothesis testing [Giné-Nickl] Set

@ F compact = 3y, ..., fyy € F such that {B(fj, m):j=1,..., N} covers F and separation hypothesis holds:
16 — fill > 2r for Wj # .

@ Step 1 and Chebyshev's inequality imply:

-~ —~ 1 P 2
inf max Pr [Hf - ;;H > r,,} < inf sup Pf [Hf - f” > rn] < = inf sup Ef Hf - f“
Fi=l. N ffer ry f feF

Notation: probability measure Py is relative to the Gaussian distribution {g(t;) + ¢; : i =1,...,n}.

© Set ji = argmin; ||f; — f||. Then

Vi=1,.. N PBp(in £)) < Py (Hffg*

<[7=sl)

@ By separation hypothesis and triangle inequality on the preceeding event,
Vj# s ra < IIF—FIl
Conclude that .
Vi=1..o N PeGe £0) < B (IF = £ > m)

© Step 2 => infrmaxj_y. nPr (s #J) < FR(, F)
Z
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Preliminaries: Minimax (lower)-bound techniques

General reduction principle via multiple hypothesis testing [Giné-Nickl] Set

@ F compact = 3y, ..., fyy € F such that {B(fj, m):j=1,..., N} covers F and separation hypothesis holds:
16 — fill > 2r for Wj # .

@ Step 1 and Chebyshev's inequality imply:

-~ —~ 1 P 2
inf max Pr [Hf - ;;H > r,,} < inf sup Pf [Hf - f” > rn] < = inf sup Ef Hf - f“
Fi=l. N ffer ry f feF

Notation: probability measure Py is relative to the Gaussian distribution {g(t;) + ¢; : i =1,...,n}.

© Set ji = argmin; ||f; — f||. Then

Vi=1,.. N PBp(in £)) < Py (Hffg*

<[7=sl)

@ By separation hypothesis and triangle inequality on the preceeding event,
Vj# s ra < IIF—FIl
Conclude that .
Vi=1..o N PeGe £0) < B (IF = £ > m)

© Step 2 => infrmaxj_y. nPr (s #J) < FR(, F)
Z

@ Information-Theoretic Lower Bound via Kullback-Leibler distance [Theorem 6.3.2, GN]:
if there exists C > 0 such that

N
Z DrL (JPO. \|n»f1) < CNlog N
=1

then infzmax;—1 . N [P’,}(j# J) can be lower-bounded by C.

Li, Loesatapornpipit, Park, Park (TAMU) Minimax estim: in Besov spaces



TEXAS A&M

UNIVERSITY

Preliminaries: Minimax (lower)-bound techniques

General reduction principle via multiple hypothesis testing [Giné-Nickl] Set

@ F compact = 3y, ..., fyy € F such that {B(fj, m):j=1,..., N} covers F and separation hypothesis holds:
16 — fill > 2r for Wj # .

@ Step 1 and Chebyshev's inequality imply:

-~ —~ 1 P 2
inf max Pr [Hf - ;;H > r,,} < inf sup Pf [Hf - f” > rn] < = inf sup Ef Hf - f“
Fi=l. N ffer ry f feF

Notation: probability measure Py is relative to the Gaussian distribution {g(t;) + ¢; : i =1,...,n}.

© Set ji = argmin; ||f; — f||. Then

Vi=1,.. N PBp(in £)) < Py (Hffg*

<[7=sl)

@ By separation hypothesis and triangle inequality on the preceeding event,
Vj# s ra < IIF—FIl
Conclude that .
Vi=1..o N PeGe £0) < B (IF = £ > m)

© Step 2 => infrmaxj_y. nPr (s #J) < FR(, F)
Z

@ Information-Theoretic Lower Bound via Kullback-Leibler distance [Theorem 6.3.2, GN]:
if there exists C > 0 such that

N
Z DrL (JPO. \|n»f1) < CNlog N
=1

then infzmax;—1 . N [P’,}(j# J) can be lower-bounded by C.

@ Conclusion: if separation hypothesis and KL bound holds, we can conclude that
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Proof of the minimax rate (lower bound) AFI ‘ Aot £t

The proof now reduces to verifying the separation hypothesis and the KL bound. Fix N € N for the number of
rp-balls to cover F.
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Proof of the minimax rate (lower bound) AFI ‘ Aot £t

The proof now reduces to verifying the separation hypothesis and the KL bound. Fix N € N for the number of
rp-balls to cover F.

@ Consider the S-regular Daubechies wavelets. At the j-th level, there are 2/ wavelet functions
{Yi:k=1,...,c02}.
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Proof of the minimax rate (lower bound) AFI ‘ Aot £t

The proof now reduces to verifying the separation hypothesis and the KL bound. Fix N € N for the number of
rp-balls to cover F.

@ Consider the S-regular Daubechies wavelets. At the j-th level, there are 2/ wavelet functions
{Yi:k=1,...,c02}.

Q Let Bm = (Bmk) € {—1, 1}“02j (Hamming cube), and set
o 02
=0, fn(x)=276+2) > Bk ().
k=1

Note that Hf’"Hvaq <lforallm=1,...,c2.
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Proof of the minimax rate (lower bound) AFI ‘ Aot £t

The proof now reduces to verifying the separation hypothesis and the KL bound. Fix N € N for the number of
rp-balls to cover F.

@ Consider the S-regular Daubechies wavelets. At the j-th level, there are 2/ wavelet functions
{Yi:k=1,...,c02}.

Q Let Bm = (Bmk) € {—1, 1}“02j (Hamming cube), and set
o 02
=0, fn(x)=276+2) > Bk ().
k=1

Note that ”f’"Hvaq <lforallm=1,...,¢2.

© Parseval’s identity:

) 2
Vhm # Bt € {-1L1F ¢ lfin — FollF2p0 1y = 270 D Bk — Bwrs)®
k=1
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Proof of the minimax rate (lower bound)

The proof now reduces to verifying the separation hypothesis and the KL bound. Fix N € N for the number of
rp-balls to cover F.

@ Consider the S-regular Daubechies wavelets. At the j-th level, there are 2/ wavelet functions
{Yi:k=1,...,c02}.
Q Let Bm = (Bmk) € {—1, 1}“02] (Hamming cube), and set
. 02
fo=0, fu(x)=27C"2)3" By (x).
k=1

Note that HmeBf, . <lforallm=1,...,c2.
© Parseval’s identity:

. 2/
y »
VBm # B € {=1, 137 1l — fullT2.5) = 27 D" (Bmk — Buri)’
k=1

@ Using coding theory (Gilbert-Shannon-Varshamov bound), 3c¢i, c; > 0 and subset M C {—1, 1}602]
such that #M = 29? and
Vm#m' € M: Z |Bm — Buy |7 > 0222
m
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Proof of the minimax rate (lower bound)

The proof now reduces to verifying the separation hypothesis and the KL bound. Fix N € N for the number of
rp-balls to cover F.
@ Consider the S-regular Daubechies wavelets. At the j-th level, there are 2/ wavelet functions
{Yi:k=1,...,c02}.
Q Let Bm = (Bmk) € {—1, 1}“02] (Hamming cube), and set
02

=0, fu(x) =273 Br(x).
k=1

Note that ”f'"HBfnq <lforallm=1,...,c2.
© Parseval’s identity:
. of
VBm # By €A=L 11 ¢ N — far 200y = 277 S Bk — B’
k=1
@ Using coding theory (Gilbert-Shannon-Varshamov bound), 3c¢i, c; > 0 and subset M C {—1, 1}602]
such that #M = 29? and
Vm#m' € M: Z |Bm — Buy |7 > 0222
m

log(n
@ For large enough n € N, choose | j = > gii and N < #M < NN, Hence separation hypothesis holds:
S

fm = fourll 2 2 27
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Proof of the minimax rate (lower bound)

KL bound: Since P¢ is drawn from i.i.d. Gaussian samples {(x;, f(x;) +n;) : i =1,...,n}, it
tensorizes and gives (via Radon-Nikodym)

Dk (P, [IPg) = n | Dke (Px [IPx) +Ex~p, DkL (fin(x) + 1 1 fo(x) + )
—_———
=0

n n
= 5 3B () = HONE = 55 llfm = Bllf2(e,) = ||fm||L2 -

where Py is Lebesgue (uniform) measure on [0, 1].
By our wavelet construction,

n n .
sz Ifmllfs < 55 <27/ | B2 < log #M < Nlog N

Thus,
DkL (Pg, [IPg) < Nlog N

Conclusion: ,
R(n,F) Z n~ 2+ (24)
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e _ 252y
Assuming R(n, F) =< n~ 2s+1, we prove that R, (n, F) < n 25+1-27 where v = % — Téz'

By wavelet theory, there is a correspondence between Besov functions and wavelet coefficients:

Re(n, F) = Re(52,05,4) = inf sup E[|0 — 613
0 G)p,q
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Proof of linear minimax rate AI' ?E:I%AESR‘;&?M

e _ 252y
Assuming R(n, F) =< n~ 2s+1, we prove that R, (n, F) < n 25+1-27 where v = % — Téz'

By wavelet theory, there is a correspondence between Besov functions and wavelet coefficients:

Re(n, F) = Re(52,05,4) = inf sup E[|0 — 613
0 G)p,q

@ Quadratic hull:
QHull(©) = {0 : 6> € Hull(62)}
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Proof of linear minimax rate

e _ 252y
Assuming R(n, F) =< n~ 2s+1, we prove that R, (n, F) < n 25+1-27 where v = % — Téz'

By wavelet theory, there is a correspondence between Besov functions and wavelet coefficients:

Re(n, F) = Re(52,05,4) = inf sup E[|0 — 613
0 G)p,q

@ Quadratic hull:
QHull(©) = {0 : 6> € Hull(62)}

@ [Donoho-Liu-MacGibbon, Annals-Stat '90] showed that

QHull(e; ) = e;;;qu

and
Ri(e,©) = Ryi(e, QHulI(©)), and R.(e, QHull(®)) ~ R(e, QHull(O))
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Proof of linear minimax rate

Assuming R(n,F) < n~ 25+1, we prove that Ry (n, F) < n" ik where v = = — p—bz

By wavelet theory, there is a correspondence between Besov functions and wavelet coefficients:

Ra(n, F) ~ R ©;:.4) := inf sup E||§ — 6|3
’ 6 e,

(%

@ Quadratic hull:
QHull(©) = {0 : 6> € Hull(62)}

@ [Donoho-Liu-MacGibbon, Annals-Stat '90] showed that

QHull(©; ) = pv2 av2

and
Ri(e,©) = Ryi(e, QHulI(©)), and R.(e, QHull(®)) ~ R(e, QHull(O))

@ Thus, for p < g < 2, we have the (suboptimal) linear rate

- _ 25—2y
Ri(n, F) =~ Ri(en, ©; ) = Ri(en, QHul(e; ) = Ri(en, © 52 ) = (6,,,@;772”’) = n 2stl-2%

along the sequence ¢, = %
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Wavelet threshold estimator

o Construction of the estimator:
@ Apply discrete wavelet transform on y; with suitable wavelet (e.g., Daubechies, Meyer), i.e.,
0; = W;Y; W;: an orthogonal matrix corresponding to the discrete wavelet transform operator at
Jjth level. Obtain 6; up to j = —1,..., (logn — 1)th level.
@ Apply thresholding to 6 with the certain threshold A; denote §x(60j). See Figure 2.
@ Hard thresholding:
oa(2) = z1(1z> 0
@ Soft thresholding:
dx(2) = sen(2)a(|z] — A).
© Apply inverse wavelet transform using dx(6j«), i.e.,

logn—1 2J
MOEE I BENCAIAC!
j=—1 k=1
for A = ()\jk)j,k-
@ Thresholding works like ‘denoising’.
o o (1
| I O
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Proof of the optimality of the wavelet estimator | AFI ‘ UNIVERSITY

@ The proof consists of the following steps:
@ Instead of the original problem i.e., estimating f* given D,, consider a ‘Gaussian white noise model’
in a sequence space; > has a counterpart 6 in the Gaussian white noise model.
@ Show IN* s.t. 6*" " minimax optimal for the Gaussian white noise model.

@ Here, use equivalence between minimax risk and minimax Bayes risk:

—~ 2 ~ 2
inf sup He - eH =R(e, 0] ) < B, ) i=inf  sup  Eg, [0 - aH ,
0 0cos ’ 0 HEP(©3 )
~ 2
Ry(e, 05 ) = Br(c, 05 ) :=inf sup  Ego, ||o> - GH .

A S
HEP(O} 4)

@ In fact, Bayes risk < minimax risk always holds (*. mean < max).
@ < holds for this problem - ef, q is a convex set w.r.t. measures and £2 loss is lower semi-continuous.

© Show Gaussian white noise model & the original problem.

o = R7(n,F) SR7(e,05 4) S R(e, 05 4) X R(n, F) when e = o/+/n.
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Proof of the optimality of the wavelet estimator | AFI ‘ UNIVERSITY

@ Gaussian white noise model in sequence space:

yi=0+z

k—1 k
et =izt Zf':{’f*:[T’E]}H

yeeey

o 9 N0, ),

° (3,* = 5>\/ (y1) in the sequence model corresponds to > in the previous slides.
o We first show

. s 2
’Rr(e,e;q) i=min_ sup E H0>‘ - 0”2 < Cp’R(e,@;q)
orees o

as e — 0. Here, © is some ball of wavelet sequence w.r.t. wavelet sequence Besov norm; see
(DJ98)[Equation (6)].
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o Proof for the sequence model: R7(¢,05 ;) S R(e, O} )
@ There exists a prior distribution p* € P(©}, ) such that R(e, ©) is equal to a Bayes risk w.r.t.
p* = (p ez, ie.,

R1(e,©;,4) X Br(e,©; 4) = o B2 iglf Eopmpy [63,(1) = 02 =7 pu)-
] ]

=p(1y)

This is proven by showing the target functional has a saddle point (A}, u}).
Q @;’q being some ball implies p € P(@f,’q) has a finite pth moment, i.e., 7 = (7/);cz has a finite

Besov norm, where 7; = E |6,|,. This implies p(u;") < infy, SUPg, (o, <, Eg, |5>\I(y) - 6‘,|2.
p<
© (DJ94) showed for some C, > 0, the minima A satisfies

2
sup [y, |6A/‘()’I) -0/ <G sup  Egpmpy Iy — 07
Buy|0s],<7 Buy|0)],<7

@ Lastly, minimax risk upper bounds Bayes risk, i.e., the 3=, RHS < C,R(e, ©;, ).
o . Rr(e @fw) < CPR(E,@;‘?).
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Proof of the optimality of the wavelet estimator [' AI' UNIVERSITY

o Asymptotic equivalence between function estimation problem and sequence model: Our final
step is to show
72T("7]:) 5 RT(U/\/E» ef),q)'

In fact, < holds, but we omit > part.
@ Given x; = i/n, there exists a smooth interpolation of f(x;) called Deslauriers-Dubuc interpolant
f :[0,1] — R. Such interpolant satisfies

2 2

sup Ep, Hf— f*
f*eF

~ sup IEH?— ?”

2@ rer 2(0,1)

as n — oo (Px being uniform is used here).
42 ~ ~|2
@ Isometry property of the wavelet gives Hf — f“L2 = HGA — GHZ.
© 0 is the Gaussian white noise model of
Vi=0+ez, |e€UElT;
The specific choice of the interpolation and the optimal A = A\* induces ¢, = Co/+/n and
0, € CO;,  for some (possibly different) C > 0.

~||2
" — 6| =Rr(en €O ) = Rr(o/ VA, ©5,) S R(0/v/n, ©5,) =< R(n, F).

Q . supgeos ‘ ,
Here, the optimality of \* and the scaling property of R was used.

- 2
o In conclusion, there exists A* s.t. sups« E HV‘ —f*| SR(n,F).
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Proof of minimax rate (upper bound)

o To finalize the result, it is sufficient to obtain R(e, ©3 ,)'s upper bound.
Q Again, recall R(e, 95, ) < B(e, ©; ) = infy SUPueP(@f,’q)]EGNM Hé’ - 6‘”2.
@ Observe this structure can be decomposed, i.e.,
~ 2 ~ 2
inf  sup Eg~pEy, HG — 0“ < Z irlfsup]E(.,»IN“,l )9, — 0/|
0 LEP(O3 4) 2 RG]

<> inf sup Eojmi/ By, [0 = 01
7 0 g st pth moment of i) is T/ee/sz.q

| 2

=p(7),€)
© The above problem becomes solving the constraint optimization min p(t, €) given |t[,s < C. One
P.q

can solve such optimziation using the calculation rule for p(t, €) for this specific Gaussian white
noise model (DJ94).

4s
@ Solving the optimization problem induces B(e, ©;, ) < e25+1.

2s 2s
o .n =T SR(n, F) SR(c/v/n,05 ) Sn 5+,

@ Remark: This is ‘not’ a typical strategy in Statistics. Instead, one directly calculates the
upper bound of the certain estimator and show it matches to the lower bound; for the
wavelet threshold estimator, e.g., (GN15)[Proposition 5.1.7].
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Total summary of the proof AFI ‘ Ulioges sball

2s

_2s (D &) (3) (4) (5) _ 2
o n 2+l S R(nvj:) S RT(nv}—) 5 RT(O-/\/E7 e;,q) S R(O’/\/ﬁ, efn,q) 5 n o 2s+l,

@ (1): the lower bound proof.

@ (2): the definition of the minimax rate.

o (3): the equivalence between estimation and Gaussian white noise model.
o (4): optimality of the wavelet estimator.

o (5): upper bound analysis.

o "\ R(n,F) = Ry(n,F) = n~ 21
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If we consider Q = [0,1]¢ instead of [0, 1], the minimax rate for B ,(Q) with s > d/p is

2s
R(n,F) 2 n 2+d.

@ The proof goes the same as earlier minimax proof; consider
fin(x) = 276H1/2) 37, Brwtbik(x), where 1 forming a wavelet basis of L2(£2). In this
case, at jth resolution level there are now C2/? wavelet coefficients. The rest goes the same.
@ The minimax optimality of the wavelet threshold estimator can be analyzed in d > 1 as well,

but practically such estimator is not desirable as the number of wavelet coefficients grows
exponentially w.r.t d.

@ . we want to consider the alternative estimator.
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Estimation error with DNN estimators.
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Deep Neural Network estimator error | UNIVERSITY

o Let ®(L, W, S, B) be a L-layer W-width ReLU Deep neural network with the following
structure:

O(L,W,S,B)(x) = [(W() +b1) 0o ooo (WD) + bM)] (x).  (25)

o L: Neural network depth.

o W: Neural network width, i.e., W) € RV*W p) ¢ RY forall 1 =1,..., L.
o S: Sparsity parameter, i.e., E/L:1 H|W“)||0 + ||b(”HO] <S.

e B: Norm constraint, i.e.,, max/—1,... 1 [HW(/)H ,Hb(’)H ] <B.

o o0: ReLU activation.
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Deep Neural Network estimator error |l UNIVERSITY

o Consider the problem of estimating f* € BB;S7 q(Q)(O7 1) N Broo(g)(0, F) for some F > 0, with
the data y; = £*(x;) + n; with 7 "2 N(0,02) and x; "~ P, where supp(Px) C Q = [0, 1]¢.

Theorem (DNN estimator of Besov function)

Let f := argmin heo(Lw,s,8) o1 |vi — h(xi)|?, called Empirical Risk Minimizer (ERM) with
L,W,S, B that depends on n,s,d, p. For all f* € BB; q(Q)(O, 1) N Byoo(g)(0, F) with some F > 0,

PN 2s
f*ff‘ < n~ %44 (log n)3.

E 2
On ‘ 12(P,)

@ The proof consists of two ingredients:
Approximation of a Besov function f* by some DNN f. f may depends on f*
Statistical learning theory to control the error between f and the best approximator f for any choice

=7 -A

Total error ||f" — F” is bounded by the above two errors: |

Minimax estimation in Besov spaces
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Ingredient I: Approximation | UNIVERSITY

o Optimal approximation error: For sufficiently large N € N, there exists L, W, S, B that
depends on N,d,s, p s.t.

s

sup inf H?f SN 4.

f*eBps q(Q)(O,l) feo(L,W,S,B)

o Basic strategy: two-stage approximation: Bf,yq(Q) ~ B-spline functions =~ ®(L, W, S, B).
o B-spline functions:

@ Fix m and consider

Nm(x;) :== Lo, * Lo,y * -+ * Lo,y (xi)-

(m+1) times

@ Np(x) is a piecewise polynomial of the order m.
@ The following basis is called B-spline.

d
M) = T Mm@ = ).
i=1

One can think of j as a location parameter and k as spatial resolution (just like a wavelet).
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Ingredient |I: Approximation Il
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o B; ,(Q) ~ B-spline is well established in (DP88).

o B-Spline =~ ®(L, W, S, B) is from the following observations:
@ For some M > 0, write (o, pp)(x) := o(x) — o(x — M) = M A o(x).
@ Observe Npy(x) has the form

M) = — PR ("] )eme <%,1_4> (2%11))"’

"o m+1

~
~

m
We focus on approximating <¢(0,1— mil) (;—1{)) . Once this is possible, approximating the linear

combination is doable.
@ (Yarl7) showed for some D € N there exists 1 : RP 5 Re &(Ly, Wy, 51, By) for some Ly, Wy, Sq, B; that
depends on m and e such that

su — ), — - — €
XG[O?M] M 'y M\ m ©M\ ' -

m times. Write this function as 1 o ‘P(O,M)(X/M)'

@ Therefore, the reasonable construction of the approximator of N, (x) will be

f(x) = % r_njl(—l)j (mj 1)(m+ nT (V’ ° %,17#) (;;D) ’

@ Then, one can appropriately manipulate 1) and f to make M[T")d(x)
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e For any F > 0 and any function space F C Bjcc()(0, F), there exists the following
generalization gap type bound:

2

< |°gN(F757 ”Hoo)
L12(P) — n

Ep +6(F +0)

f*—?‘

C | nf 1" = Fllizgp) + (F? +0%)

n

~||F= ]l ~[|F=7]
Proof strategy:

@ Substitute f to the closest 5-minimal covering of F and use the fact ' C Bjoo(q)(0, F) to bound
the population risk by the empirical risk (Hardest part).
@ Bound the empirical risk in terms of the optimal recovery error: By using the fact that f is ERM.

o Set F = ®(L, W, S, B) N Byoo(q)(0, F), and then the covering number analysis will give the
following:

log N (®(L, W, S, B),d,||ll,,) <2SLlog ((BV 1)(W +1))+ Slog (é) .

e This result is from using Lipschitz continuity of ReLU repeatedly for each layer.

o Set § =1/nin Step 1's RHS;
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@ Apply (1) the approximation result to get infrc £ ||f* — f||%2(P) < N™d, and (2) the covering
number bound obtained in Step 2 with specific L, W, S, B in approximation result.

d
@ Then, optimizing the RHS w.r.t. N will induce the claimed bound with N < n2+d .
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Limitations of DNN estimator
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@ How to actually train such neural network?

e Solving constraint optimization.
o Can we solve this is plain unconstraint optimization, possibly with a regularizer?
o Constraints are used in two parts:
@ Approximation: This is to avoid the overfitting to the noise.
@ Learning: To bound the covering number, which controls the generalization bound.
o It is not immediate how to avoid such constraints in approximation stage. On the other hand, there
are alternative approaches to obtain a generalization bound (e.g., Rademacher complexity, VC
dimensions) to avoid the constraint. Can we utilize those?

o Adaptivity
o Constructing ®(L, W, S, B) requires the prior knowledge on the regularity of the P*; e.g., choices of
L, W,S, B require s, p. This makes the estimation non-adaptive.
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Thank You For Your Attention!
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