Minimax estimation in Besov spaces

Yongming Li Nichakan Loesatapornpipit Jiyoung Park Lucas Park

Math 663

Outline

- Introduction
 - Main questions
- Definitions
- Theorem of Donoho-Johnstone
- Proof overview
- 6 Higher dimension minimax
- Neural networks
- Summary

Suppose we are given n noisy samples of a function f:

$$y_i = f(t_i) + \epsilon_i, \quad i = 1, \ldots, n$$
 (1)

with $t_i = \frac{i}{n} \in [0,1]$ and $\epsilon_i \sim \mathcal{N}(0,\sigma^2)$. Assuming f belongs to a certain smoothness class \mathcal{F} , can we find an estimator \hat{f} depending on data y_1, \ldots, y_n such that \hat{f} minimizes the risk

$$\mathbb{E} \int_0^1 \left(\hat{f}(t) - f(t) \right)^2 \mathrm{d}t. \tag{2}$$

Definition: Minimax risk

$$\mathcal{R}(n,\mathcal{F}) := \inf_{\hat{f}} \sup_{f \in \mathcal{F}} \mathbb{E} \int_0^1 (\hat{f}(t) - f(t))^2 dt.$$
 (3)

<u>This talk:</u> We consider the smoothness class of Besov spaces $B_{p,q}^s$, and give a quantitative answer to the above problem.

Besov Spaces

Besov spaces can be defined in various ways.

- Moduli of Smoothness
- Wavelet Coefficients
- Low-Frequency Approximations
- Littlewood-Paley Theory

Let $\Delta_h^r(f)(x)$ be the *r* difference defined by

$$\Delta_h^{(r)}(f)(x) = \sum_{k=0}^r \binom{r}{k} (-1)^{r-k} f(x+kh). \tag{4}$$

Let A be subinterval of \mathbb{R} . For $f \in L^p(A), 1 \le p \le \infty$, the rth modulus of smoothness is defined by

$$\omega_r(f,t) \equiv \omega_r(f,t,p) = \sup_{0 < h < t} \left\| \Delta_h^{(r)} f \right\|_p, \quad t > 0.$$
 (5)

Given s>0 and let r>s be an integer. For $1\leq q\leq \infty, 1\leq p\leq \infty,$ the Besov space is defined by

$$B_{pq}^{s} \equiv B_{pq}^{s}(A) = \begin{cases} f \in L^{p}(A) : \|f\|_{B_{pq}^{s}} \equiv \|f\|_{p} + |f|_{B_{pq}^{s} < \infty}, & 1 \leq p < \infty, \\ f \in C_{u}(A) : \|f\|_{B_{pq}^{s}} \equiv \|f\|_{\infty} + |f|_{B_{pq}^{s} < \infty}, & p = \infty, \end{cases}$$
(6)

where

$$|f|_{\mathcal{B}_{pq}^{s}} \equiv |f|_{\mathcal{B}_{pq}^{s}(A)} = \begin{cases} \left(\int_{0}^{\infty} \left[\frac{\omega_{r}(f,t)}{t^{s}} \right]^{q} \frac{dt}{t} \right)^{\frac{1}{q}}, & 1 \leq q < \infty, \\ \sup_{t>0} \frac{\omega_{r}(f,t)}{t^{s}}, & q = \infty, \end{cases}$$
(7)

is the Besov seminorm.

<u>Definition</u> $\phi \in L^2(\mathbb{R})$ is the scaling function of a multiresolution analysis of $L^2(\mathbb{R})$ if it satisfies the following conditions

- The family $\{\phi(\cdot k)\}_{k \in \mathbb{Z}}$ is an orthonormal system in $L^2(\mathbb{R})$; that is $<\phi(\cdot k), \phi(\cdot l)>=\delta_{k,l}$.
- The linear spaces

$$V_0 = \{ f(x) = \sum_{k \in \mathbb{Z}} c_k \phi(x - k), \{ c_k \}_{k \in \mathbb{Z}} : \sum_{k \in \mathbb{Z}} c_k^2 < \infty \},$$

$$V_1 = \{ f(2x) : f \in V_0 \}, \dots,$$

$$V_j = \{ f(2^j x) : f \in V_0 \}, \dots,$$

are nested; that is,

$$V_0 \subset V_1 \subset V_2 \subset \dots$$

 $\bullet \ \overline{\cup_{j\geq 0} V_j} = L^2(\mathbb{R}).$

$$V_j = \text{span}\{\phi_{jk}(x) := 2^{j/2}\phi(2^j x - k)\}_{k = -\infty}^{\infty}$$
(8)

Since $V_0 \subset V_1$, the space V_1 can be defined by

$$V_1 = V_0 \oplus W_0 \tag{9}$$

where W_0 is the orthogonal complement of V_0 in V_1 . Since the spaces V_i are nested,

$$V_j = V_0 \oplus \left(\bigoplus_{\ell=0}^{j-1} W_\ell\right), \quad W_\ell := V_{\ell+1} \ominus V_\ell$$
 (10)

Let $K_i(f)$ be the orthogonal L^2 -projections of $f \in L^2$ onto V_i , which is defined by

$$K_j(f) = K_0(f) + \sum_{\ell=0}^{j-1}$$
 the projections onto W_ℓ , (11)

where

$$K_0(f)(x) = \sum_{k \in \mathbb{Z}} \langle \phi_k, f \rangle \phi_k(x), \tag{12}$$

and $\phi_k(x) = \phi(x - k)$.

Find basis functions that span the spaces W_ℓ

Assume that there exists a fixed $\psi \in L^2(\mathbb{R})$ such that, for every $\ell \in \mathbb{N} \cup \{0\}$,

$$\{\psi_{\ell,k} := 2^{\ell/2}\psi(2^{\ell}(\cdot) - k) : k \in \mathbb{Z}\}$$
(13)

is an orthonormal set of functions that spans W_{ℓ} .

• Haar system: if $\phi = \mathbb{1}_{[0,1]}$ the Haar wavelet is $\psi = \mathbb{1}_{[0,\frac{1}{2}]} - \mathbb{1}_{(\frac{1}{2},1]}$.

The projection of f onto W_{ℓ} is

$$\sum_{k \in \mathbb{Z}} <\psi_{\ell k}, f > \psi_{\ell k} \tag{14}$$

Therefore, the projection $K_i(f)$ of f onto V_i is

$$K_j(f)(x) = \sum_{k \in \mathbb{Z}} \langle \phi_{jk}, f \rangle \phi_{jk}(x)$$
(15)

$$= \sum_{k \in \mathbb{Z}} \langle \phi_k, f \rangle \phi_k(x) + \sum_{\ell=0}^{j-1} \sum_{k \in \mathbb{Z}} \langle \psi_{\ell k}, f \rangle \psi_{\ell k}(x)$$
 (16)

Since $\bigcup_{j\geq 0} V_j$ is dense in L^2 ,

$$L^2 = V_0 \oplus \left(\bigoplus_{\ell=0}^{\infty} W_{\ell}\right). \tag{17}$$

Hence,

$$\{\phi(x-k), 2^{\ell/2}\psi(2^{\ell}x-k) : k \in \mathbb{Z}, \ell \in \mathbb{N} \cup \{0\}\}$$
 (18)

is an orthonormal wavelet basis of the Hilbert space L^2 .

Let the scaling function $\phi_k(x)=\phi(x-k)$ be of the first wavelet ψ_{-1k} . This implies that we can abbreviate the wavelet basis as $\{\psi_{\ell k}\}$. Hence, every $f\in L^2$ has the wavelet series expansion

$$f = \sum_{k \in \mathbb{Z}} \langle \phi_k, f \rangle \phi_k(x) + \sum_{\ell=0}^{\infty} \sum_{k \in \mathbb{Z}} \langle \psi_{\ell k}, f \rangle \psi_{\ell k}(x)$$

$$= \sum_{k \in \mathbb{Z}} \langle \phi_k, f \rangle \phi_k(x) + \sum_{k \in \mathbb{Z}} \sum_{\ell=0}^{\infty} \langle \psi_{\ell k}, f \rangle \psi_{\ell k}(x)$$

$$= \sum_{\ell \geq -1} \sum_{k \in \mathbb{Z}} \langle \psi_{\ell k}, f \rangle \psi_{\ell k}(x). \tag{19}$$

Definition A multiresolution wavelet basis

$$\{\phi_k = \phi(x-k), \psi_{\ell k} = 2^{\ell/2}\psi(2^{\ell}(x)-k) : k \in \mathbb{Z}, \ell \in \mathbb{N} \cup \{0\}\}$$

of $L^2(\mathbb{R})$ with the projection kernel $K(x,y)=\sum\limits_{k\in\mathbb{Z}}\phi(x-k)\phi(y-k)$ is said to be S-regular for some $S\in\mathbb{N}$ if the following conditions are satisfied:

 $\bullet \ \int_{\mathbb{R}} \psi(u) u^\ell du = 0 \ \forall \ell = 0, 1, \dots, S-1, \quad \int_{\mathbb{R}} \phi(x) dx = 1, \ \text{and for all} \ v \in \mathbb{R},$

$$\int_{\mathbb{R}} K(v,v+u) du = 1, \int_{\mathbb{R}} K(v,v+u) u^{\ell} du = 0 \ \forall \ell = 1,\dots,S-1,$$

- ullet $\sum_{k\in\mathbb{Z}}|\phi(x-k)|\in L^\infty(\mathbb{R}),\;\sum_{k\in\mathbb{Z}}|\psi(x-k)|\in L^\infty(\mathbb{R}),$ and
- For $\kappa(x,y)$ equal to either K(x,y) or $\sum \psi(x-k)\psi(y-k)$,

$$\sup_{v \in \mathbb{R}} |\kappa(v,v-u)| \leq c \Phi(c_2|u|), \text{ for some } 0 < c_1,c_2 < \infty \text{ and every } u \in \mathbb{R},$$

for some bounded integrable $\Phi:[0,\infty)\to\mathbb{R}$ such that $\int_{\mathbb{R}}|u|^{S}\Phi(|u|)du<\infty.$

Definition by Wavelet Coefficients

We will use a wavelet basis of regularity $S>s,S\in\mathbb{N}$ satisfying $\phi,\psi\in C^S(\mathbb{R})$ with $D^S\phi,D^S\psi$ dominated by some integrable function. Starting from the wavelet series

$$f = \sum_{k \in \mathbb{Z}} \langle \phi_k, f \rangle \phi_k + \sum_{\ell=0}^{\infty} \sum_{k \in \mathbb{Z}} \langle \psi_{\ell k}, f \rangle \psi_{\ell k}, \text{ in } L^p, 1 \le p \le \infty,$$
 (20)

of $f \in L^p(\mathbb{R})(p < \infty)$ and of $f \in C_u(\mathbb{R})(p = \infty)$. The idea is to use the decay, as $\ell \to \infty$, of the L^p norms

$$\left\| \sum_{k} \langle f, \psi_{\ell k} \rangle \psi_{\ell k} \right\|_{L^{p}} \simeq 2^{\ell(\frac{1}{2} - \frac{1}{p})} \left\| \{ \langle f, \psi_{\ell k} \rangle \}_{k} \right\|_{\ell^{p}}$$

to describe the regularity of a function f.

Fot $1 \le p \le \infty, 1 \le q \le \infty, 0 < s < S$, we set

$$B_{pq}^{s,W} \equiv \begin{cases} f \in L^{p}(\mathbb{R}) : \|f\|_{B_{pq}^{s,W}} < \infty, & 1 \le p < \infty, \\ f \in C_{u}(\mathbb{R}) : \|f\|_{B_{pq}^{s,W}} < \infty, & p = \infty, \end{cases}$$
 (21)

with wavelet-sequence norm, given, for $s \in \mathbb{R}$, by

$$\|f\|_{\mathcal{B}^{s,W}_{pq}} \equiv \begin{cases} \|\{\langle f,\phi_{k}\rangle\}_{k}\|_{p} + \left(\sum\limits_{\ell=0}^{\infty} 2^{q\ell(s+\frac{1}{2}-\frac{1}{p})}\|\{\langle f,\psi_{\ell k}\rangle\}_{k}\|_{p}^{q}\right)^{1/q}, & 1 \leq q < \infty \\ \|\{\langle f,\phi_{k}\rangle\}_{k}\|_{p} + \sup_{\ell>0} 2^{\ell(s+\frac{1}{2}-\frac{1}{p})}\|\{\langle f,\psi_{\ell k}\rangle\}_{k}\|_{p}, & q = \infty. \end{cases}$$

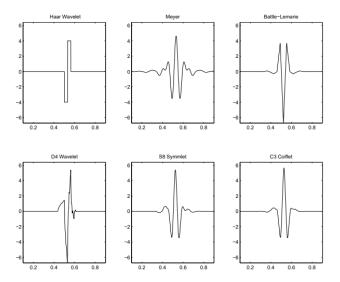


Figure 1: Wavelet basis. Source: Iain M. Johnstone's textbook pg. 192

Theorem (Donoho-Johnstone '98)

Let $\mathcal{F}=B_{B^s_{p,q}([0,1])}(0,1)$ be a unit ball in the Besov space $B^s_{p,q}$, where

$$s > \frac{1}{p}, \quad 1 \le p, q \le \infty \quad \text{or} \quad s = p = q = 1.$$
 (23)

Let $\mathcal{R}(n,\mathcal{F})=\inf_{\widehat{f}}\sup_{f\in\mathcal{F}}\mathbb{E}_{D_n}\left\|\widehat{f}-f\right\|_{L^2(P_x)}^2$ denote the minimax risk from observations and let $\mathcal{R}_L(n,\mathcal{F})$ denote the minimax risks when the infimum is restricted to be linear in the data (y_i) . Here, $D_n=(x_i,f(x_i)+\eta_i)_{i=1,\dots,n}$ with $x_i\overset{i.i.d}{\sim}P_x$ an uniform measure over [0,1] and $\eta_i\overset{i.i.d}{\sim}N(0,\sigma^2)$. Then,

Minimax rate:

$$\mathcal{R}(n,\mathcal{F}) \asymp n^{-\frac{2s}{2s+1}} \qquad \mathcal{R}_L(n,\mathcal{F}) \asymp n^{-\frac{2s-2\gamma}{2s+1-2\gamma}} \quad \gamma := \frac{1}{\rho} - \frac{1}{\rho \vee 2}$$

② Optimality of the wavelet shrinkage estimator: If $p \le q$, there exists a wavelet estimator with a proper thresholding \hat{f} such that

$$\sup_{f\in\mathcal{F}}\mathbb{E}_{D_n}\left\|\widehat{f}-f\right\|_{L^2(P_x)}^2\lesssim \mathcal{R}(n,\mathcal{F})(1+o(1)).$$

 $\underline{\text{General reduction principle via multiple hypothesis testing}} \; [\text{Gin\'e-Nickl}] \; \text{Set} \left[r_n \asymp n^{-\frac{S}{2s+1}} \right]$

 $\underline{\text{General reduction principle via multiple hypothesis testing}} \; [\text{Gin\'e-Nickl}] \; \text{Set} \quad r_n \asymp n^{-\frac{5}{2s+1}}$

 $\underline{\text{General reduction principle via multiple hypothesis testing [Giné-Nickl] Set}} \; \; r_n \asymp n^{-\frac{5}{2s+1}}$

- Step 1 and Chebyshev's inequality imply:

$$\inf_{\widehat{f}} \max_{j=1,\ldots,N} \mathbb{P}_{f_j} \left[\left\| \widehat{f} - f_j \right\| \geq r_n \right] \leq \inf_{\widehat{f}} \sup_{f \in \mathcal{F}} \mathbb{P}_{f} \left[\left\| \widehat{f} - f \right\| \geq r_n \right] \leq \frac{1}{r_n^2} \inf_{\widehat{f}} \sup_{f \in \mathcal{F}} \mathbb{E}_{f} \left\| \widehat{f} - f \right\|^2$$

Notation: probability measure $\mathbb{P}_{\mathbf{g}}$ is relative to the Gaussian distribution $\{g(t_i) + \epsilon_i : i = 1, \dots, n\}$.

 $\underline{\text{General reduction principle via multiple hypothesis testing [Giné-Nickl] Set}} \; | \; r_n \asymp n^{-\frac{S}{2s+1}}$

- **③** \mathcal{F} compact $\Longrightarrow \exists f_1, \dots, f_N \in \mathcal{F}$ such that $\{B(f_j, r_n) : j = 1, \dots, N\}$ covers \mathcal{F} and separation hypothesis holds: $||f_j f_{j'}|| \ge 2r_n$ for $\forall j \ne j'$.
- Step 1 and Chebyshev's inequality imply:

$$\inf_{\widehat{f}} \max_{j=1,\ldots,N} \mathbb{P}_{f_{j}} \left[\left\| \widehat{f} - f_{j} \right\| \geq r_{n} \right] \leq \inf_{\widehat{f}} \sup_{f \in \mathcal{F}} \mathbb{P}_{f} \left[\left\| \widehat{f} - f \right\| \geq r_{n} \right] \leq \frac{1}{r_{n}^{2}} \inf_{\widehat{f}} \sup_{f \in \mathcal{F}} \mathbb{E}_{f} \left\| \widehat{f} - f \right\|^{2}$$

Notation: probability measure $\mathbb{P}_{\mathbf{g}}$ is relative to the Gaussian distribution $\{g(t_i) + \epsilon_i : i = 1, \dots, n\}$.

 $\textbf{ 3} \ \, \mathsf{Set} \, j_* = \mathsf{argmin}_i \, \|f_j - \hat{f}\|. \, \, \mathsf{Then}$

$$\forall j = 1, \ldots, N: \quad \mathbb{P}_{f_j}\left(j_* \neq j\right) \leq \mathbb{P}_{f_j}\left(\left\|\widehat{f} - f_{j_*}\right\| \leq \left\|\widehat{f} - f_j\right\|\right)$$

 $\underline{\text{General reduction principle via multiple hypothesis testing [Giné-Nickl] Set}} \;\; r_n \asymp n^{-\frac{5}{2s+1}}$

- **③** \mathcal{F} compact $\Longrightarrow \exists f_1, \ldots, f_N \in \mathcal{F}$ such that $\{B(f_j, r_n) : j = 1, \ldots, N\}$ covers \mathcal{F} and separation hypothesis holds: $||f_i f_{j'}|| \ge 2r_n$ for $\forall j \ne j'$.
- Step 1 and Chebyshev's inequality imply:

$$\inf_{\widehat{f}} \max_{j=1,\ldots,N} \mathbb{P}_{f_{j}} \left[\left\| \widehat{f} - f_{j} \right\| \geq r_{n} \right] \leq \inf_{\widehat{f}} \sup_{f \in \mathcal{F}} \mathbb{P}_{f} \left[\left\| \widehat{f} - f \right\| \geq r_{n} \right] \leq \frac{1}{r_{n}^{2}} \inf_{\widehat{f}} \sup_{f \in \mathcal{F}} \mathbb{E}_{f} \left\| \widehat{f} - f \right\|^{2}$$

Notation: probability measure $\mathbb{P}_{\mathbf{g}}$ is relative to the Gaussian distribution $\{g(t_i) + \epsilon_i : i = 1, \ldots, n\}$.

Set $j_* = \operatorname{argmin}_i ||f_i - \hat{f}||$. Then

$$\forall j = 1, \ldots, \mathsf{N}: \quad \mathbb{P}_{f_{\widehat{j}}}\left(j_{*} \neq j\right) \leq \mathbb{P}_{f_{\widehat{j}}}\left(\left\|\widehat{f} - f_{j_{*}}\right\| \leq \left\|\widehat{f} - f_{j}\right\|\right)$$

By separation hypothesis and triangle inequality on the preceding event,

$$\forall j \neq j_* : r_n \leq ||\hat{f} - f_i||.$$

Conclude that

$$\forall j = 1, \ldots, N : \quad \mathbb{P}_{f_j}(j_* \neq j) \leq \mathbb{P}_{f_j}(\|\hat{f} - f_j\| \geq r_n)$$

General reduction principle via multiple hypothesis testing [Giné-Nickl] Set $r_n \asymp n^{-\frac{5}{25+1}}$

- **③** \mathcal{F} compact $\Longrightarrow \exists f_1, \dots, f_N \in \mathcal{F}$ such that $\{B(f_j, r_n) : j = 1, \dots, N\}$ covers \mathcal{F} and separation hypothesis holds: $||f_j f_{j'}|| \ge 2r_n$ for $\forall j \ne j'$.
- Step 1 and Chebyshev's inequality imply:

$$\inf_{\widehat{f}} \max_{j=1,\ldots,N} \mathbb{P}_{f_{j}} \left[\left\| \widehat{f} - f_{j} \right\| \geq r_{n} \right] \leq \inf_{\widehat{f}} \sup_{f \in \mathcal{F}} \mathbb{P}_{f} \left[\left\| \widehat{f} - f \right\| \geq r_{n} \right] \leq \frac{1}{r_{n}^{2}} \inf_{\widehat{f}} \sup_{f \in \mathcal{F}} \mathbb{E}_{f} \left\| \widehat{f} - f \right\|^{2}$$

Notation: probability measure $\mathbb{P}_{\mathbf{g}}$ is relative to the Gaussian distribution $\{g(t_i) + \epsilon_i : i = 1, \ldots, n\}$.

Set $j_* = \operatorname{argmin}_i ||f_i - \hat{f}||$. Then

$$\forall j = 1, \ldots, \mathsf{N}: \quad \mathbb{P}_{f_{\widehat{j}}}\left(j_{*} \neq j\right) \leq \mathbb{P}_{f_{\widehat{j}}}\left(\left\|\widehat{f} - f_{j_{*}}\right\| \leq \left\|\widehat{f} - f_{j}\right\|\right)$$

By separation hypothesis and triangle inequality on the preceding event,

$$\forall j \neq j_* : r_n \leq ||\hat{f} - f_j||.$$

Conclude that

$$\forall j = 1, \ldots, N : \mathbb{P}_{f_i}(j_* \neq j) \leq \mathbb{P}_{f_i}(\|\hat{f} - f_j\| \geq r_n)$$

 $\underline{\text{General reduction principle via multiple hypothesis testing}} \; [\text{Gin\'e-Nickl}] \; \text{Set} \quad r_n \asymp n^{-\frac{S}{2S+1}}$

- **③** \mathcal{F} compact $\Longrightarrow \exists f_1, \dots, f_N \in \mathcal{F}$ such that $\{B(f_j, r_n) : j = 1, \dots, N\}$ covers \mathcal{F} and separation hypothesis holds: $||f_i f_{j'}|| \ge 2r_n$ for $\forall j \ne j'$.
- Step 1 and Chebyshev's inequality imply:

$$\inf_{\widehat{f}} \max_{j=1,\ldots,N} \mathbb{P}_{f_{j}} \left[\left\| \widehat{f} - f_{j} \right\| \geq r_{n} \right] \leq \inf_{\widehat{f}} \sup_{f \in \mathcal{F}} \mathbb{P}_{f} \left[\left\| \widehat{f} - f \right\| \geq r_{n} \right] \leq \frac{1}{r_{n}^{2}} \inf_{\widehat{f}} \sup_{f \in \mathcal{F}} \mathbb{E}_{f} \left\| \widehat{f} - f \right\|^{2}$$

Notation: probability measure $\mathbb{P}_{\mathbf{g}}$ is relative to the Gaussian distribution $\{g(t_i) + \epsilon_i : i = 1, \dots, n\}$.

3 Set $j_* = \operatorname{argmin}_i \|f_i - \hat{f}\|$. Then

$$\forall j = 1, \ldots, \mathsf{N}: \quad \mathbb{P}_{f_{\widehat{j}}}\left(j_{*} \neq j\right) \leq \mathbb{P}_{f_{\widehat{j}}}\left(\left\|\widehat{f} - f_{j_{*}}\right\| \leq \left\|\widehat{f} - f_{j}\right\|\right)$$

By separation hypothesis and triangle inequality on the preceding event,

$$\forall j \neq j_* : r_n \leq ||\hat{f} - f_j||.$$

Conclude that

$$\forall j = 1, \ldots, N : \mathbb{P}_{f_i}(j_* \neq j) \leq \mathbb{P}_{f_i}(\|\hat{f} - f_j\| \geq r_n)$$

- Information-Theoretic Lower Bound via Kullback-Leibler distance [Theorem 6.3.2, GN]: if there exists C > 0 such that

$$\sum_{i=1}^{N} \mathsf{D}_{\mathsf{KL}} \left(\mathbb{P}_{f_j} \parallel \mathbb{P}_{f_1} \right) \leq C \mathsf{N} \log \mathsf{N}$$

then $\inf_{\widehat{f}} \max_{j=1,\dots,N} \mathbb{P}_{f_i}(\widehat{j} \neq j)$ can be lower-bounded by C.

 $\underline{\text{General reduction principle via multiple hypothesis}} \ \underline{\text{testing [Gin\'e-Nickl] Set}} \ | \ r_n \asymp n^{-\frac{S}{2s+1}}$

- $||f_i - f_{i'}|| > 2r_n \text{ for } \forall j \neq j'.$
- Step 1 and Chebyshev's inequality imply:

$$\inf_{\widehat{f}} \max_{j=1,\ldots,N} \mathbb{P}_{f_{j}} \left[\left\| \widehat{f} - f_{j} \right\| \geq r_{n} \right] \leq \inf_{\widehat{f}} \sup_{f \in \mathcal{F}} \mathbb{P}_{f} \left[\left\| \widehat{f} - f \right\| \geq r_{n} \right] \leq \frac{1}{r_{n}^{2}} \inf_{\widehat{f}} \sup_{f \in \mathcal{F}} \mathbb{E}_{f} \left\| \widehat{f} - f \right\|^{2}$$

Notation: probability measure $\mathbb{P}_{\mathbf{g}}$ is relative to the Gaussian distribution $\{g(t_i) + \epsilon_i : i = 1, \dots, n\}$.

Set $j_* = \operatorname{argmin}_i ||f_i - \hat{f}||$. Then

$$\forall j = 1, \ldots, \mathsf{N}: \quad \mathbb{P}_{f_{\widehat{j}}}\left(j_{*} \neq j\right) \leq \mathbb{P}_{f_{\widehat{j}}}\left(\left\|\widehat{f} - f_{j_{*}}\right\| \leq \left\|\widehat{f} - f_{j}\right\|\right)$$

By separation hypothesis and triangle inequality on the preceeding event,

$$\forall j \neq j_* : r_n \leq ||\hat{f} - f_j||.$$

Conclude that

$$\forall j = 1, \ldots, N : \mathbb{P}_{f_i}(j_* \neq j) \leq \mathbb{P}_{f_i}(\|\hat{f} - f_j\| \geq r_n)$$

- Information-Theoretic Lower Bound via Kullback-Leibler distance [Theorem 6.3.2, GN]: if there exists C > 0 such that

$$\sum_{i=1}^{N} \mathsf{D}_{\mathsf{KL}} \left(\mathbb{P}_{f_j} \parallel \mathbb{P}_{f_1} \right) \leq \mathit{CN} \log \mathit{N}$$

then $\inf_{\widehat{f}} \max_{j=1,...,N} \mathbb{P}_{f_i}(\widehat{j} \neq j)$ can be lower-bounded by C.

Conclusion: if separation hypothesis and KL bound holds, we can conclude that $|\mathcal{R}(n,\mathcal{F})| \gtrsim r_n^2$

$$\mathcal{R}(n,\mathcal{F})\gtrsim r_n^2$$

The proof now reduces to verifying the **separation hypothesis** and the **KL bound**. Fix $N \in \mathbb{N}$ for the number of r_n -balls to cover \mathcal{F} .

The proof now reduces to verifying the **separation hypothesis** and the **KL bound**. Fix $N \in \mathbb{N}$ for the number of r_n -balls to cover \mathcal{F} .

③ Consider the S-regular Daubechies wavelets. At the j-th level, there are $c_0 2^j$ wavelet functions $\{\psi_{jk}: k=1,\ldots,c_0 2^j\}$.

The proof now reduces to verifying the **separation hypothesis** and the **KL bound**. Fix $N \in \mathbb{N}$ for the number of r_n -balls to cover \mathcal{F} .

- ① Consider the S-regular Daubechies wavelets. At the j-th level, there are $c_0 2^j$ wavelet functions $\{\psi_{jk}: k=1,\ldots,c_0 2^j\}$.
- 2 Let $\beta_{\mathbf{m}} = (\beta_{mk}) \in \{-1, 1\}^{c_0 2^j}$ (Hamming cube), and set

$$f_0 = 0$$
, $f_m(x) = 2^{-j(s+\frac{1}{2})} \sum_{k=1}^{c_0 2^j} \beta_{mk} \psi_{jk}(x)$.

Note that $||f_{\mathbf{m}}||_{\mathcal{B}_{p,q}^s} \leq 1$ for all $\mathbf{m} = 1, \ldots, c_0 2^j$.

The proof now reduces to verifying the **separation hypothesis** and the **KL bound**. Fix $N \in \mathbb{N}$ for the number of r_n -balls to cover \mathcal{F} .

- ① Consider the S-regular Daubechies wavelets. At the j-th level, there are $c_0 2^j$ wavelet functions $\{\psi_{jk}: k=1,\ldots,c_0 2^j\}$.
- 2 Let $\beta_{\mathbf{m}} = (\beta_{mk}) \in \{-1, 1\}^{c_0 2^j}$ (Hamming cube), and set

$$f_0 = 0$$
, $f_{\mathbf{m}}(x) = 2^{-j(s+\frac{1}{2})} \sum_{k=1}^{c_0 2^j} \beta_{mk} \psi_{jk}(x)$.

Note that $||f_{\mathbf{m}}||_{B_{\mathbf{p},q}^s} \leq 1$ for all $\mathbf{m} = 1, \ldots, c_0 2^j$.

Parseval's identity:

$$\forall \beta_{\mathbf{m}} \neq \beta_{\mathbf{m}'} \in \left\{-1, 1\right\}^{2^{j}} : \quad \|f_{\mathbf{m}} - f_{\mathbf{m}'}\|_{L^{2}[0, 1]}^{2} = 2^{-j(2s+1)} \sum_{k=1}^{2^{j}} (\beta_{\mathbf{m}k} - \beta_{\mathbf{m}'k})^{2}$$

The proof now reduces to verifying the **separation hypothesis** and the **KL bound**. Fix $N \in \mathbb{N}$ for the number of r_n -balls to cover \mathcal{F} .

- **①** Consider the S-regular Daubechies wavelets. At the j-th level, there are $c_0 2^j$ wavelet functions $\{\psi_{jk}: k=1,\ldots,c_0 2^j\}$.
- 2 Let $\beta_{\mathbf{m}} = (\beta_{mk}) \in \{-1, 1\}^{c_0 2^j}$ (Hamming cube), and set

$$f_0 = 0$$
, $f_{\mathbf{m}}(x) = 2^{-j(s+\frac{1}{2})} \sum_{k=1}^{c_0 2^j} \beta_{mk} \psi_{jk}(x)$.

Note that $||f_{\mathbf{m}}||_{B_{n,q}^s} \leq 1$ for all $\mathbf{m} = 1, \ldots, c_0 2^j$.

Parseval's identity:

$$\forall \beta_{\mathbf{m}} \neq \beta_{\mathbf{m}'} \in \left\{-1, 1\right\}^{2^{j}} : \quad \|f_{\mathbf{m}} - f_{\mathbf{m}'}\|_{L^{2}[0, 1]}^{2} = 2^{-j(2s+1)} \sum_{k=1}^{2^{j}} (\beta_{\mathbf{m}k} - \beta_{\mathbf{m}'k})^{2}$$

① Using coding theory (Gilbert-Shannon-Varshamov bound), $\exists c_1, c_2 > 0$ and subset $\mathcal{M} \subset \{-1, 1\}^{c_0 2^j}$ such that $\#\mathcal{M} = 2^{c_1 2^j}$ and

$$\forall \mathbf{m} \neq \mathbf{m}' \in \mathcal{M}: \quad \sum_{\mathbf{m}} \left| \beta_{\mathbf{m}} - \beta_{\mathbf{m}'} \right|^2 \ge c_2 2^{j+2}.$$

The proof now reduces to verifying the **separation hypothesis** and the **KL bound**. Fix $N \in \mathbb{N}$ for the number of r_n -balls to cover \mathcal{F} .

- **①** Consider the S-regular Daubechies wavelets. At the j-th level, there are $c_0 2^j$ wavelet functions $\{\psi_{jk}: k=1,\ldots,c_0 2^j\}$.
- 2 Let $\beta_{\mathbf{m}} = (\beta_{mk}) \in \{-1, 1\}^{c_0 2^j}$ (Hamming cube), and set

$$f_0 = 0$$
, $f_{\mathbf{m}}(x) = 2^{-j(s+\frac{1}{2})} \sum_{k=1}^{c_0 2^j} \beta_{mk} \psi_{jk}(x)$.

Note that $||f_{\mathbf{m}}||_{B_{p,q}^s} \leq 1$ for all $\mathbf{m} = 1, \ldots, c_0 2^j$.

Parseval's identity:

$$\forall \beta_{\mathbf{m}} \neq \beta_{\mathbf{m}'} \in \left\{-1, 1\right\}^{2^{j}} : \quad \|f_{\mathbf{m}} - f_{\mathbf{m}'}\|_{L^{2}[0, 1]}^{2} = 2^{-j(2s+1)} \sum_{k=1}^{2^{j}} (\beta_{\mathbf{m}k} - \beta_{\mathbf{m}'k})^{2}$$

① Using coding theory (Gilbert-Shannon-Varshamov bound), $\exists c_1, c_2 > 0$ and subset $\mathcal{M} \subset \{-1, 1\}^{c_0 2^j}$ such that $\#\mathcal{M} = 2^{c_1 2^j}$ and

$$\forall \mathbf{m} \neq \mathbf{m}' \in \mathcal{M}: \quad \sum_{\mathbf{m}} \left|\beta_{\mathbf{m}} - \beta_{\mathbf{m}'}\right|^2 \geq c_2 2^{j+2}.$$

③ For large enough $n \in \mathbb{N}$, choose $j = \frac{\log(n)}{2s+1}$ and $N \leq \#\mathcal{M} \leq N^N$. Hence separation hypothesis holds: $\|f_{\mathbf{m}} - f_{\mathbf{m}'}\|_{L^2} \geq 2r_n$

<u>KL bound</u>: Since \mathbb{P}_f is drawn from i.i.d. Gaussian samples $\{(x_i, f(x_i) + \eta_i) : i = 1, \dots, n\}$, it tensorizes and gives (via Radon-Nikodym)

$$\begin{split} \mathsf{D}_{\mathsf{KL}}\left(\mathbb{P}_{\mathit{f}_{m}} \left\|\mathbb{P}_{\mathit{f}_{0}}\right) &= n \left(\underbrace{\mathsf{D}_{\mathsf{KL}}\left(\mathbb{P}_{x} \left\|\mathbb{P}_{x}\right)}_{=0} + \mathbb{E}_{x \sim \mathbb{P}_{x}} \mathsf{D}_{\mathsf{KL}}\left(\mathit{f}_{m}(x) + \eta \left\|\mathit{f}_{0}(x) + \eta\right\right)\right) \\ &= \frac{n}{2\sigma^{2}} \mathbb{E}_{x \sim \mathbb{P}_{x}} \left\|\mathit{f}_{m}(x) - \mathit{f}_{0}(x)\right\|_{2}^{2} = \frac{n}{2\sigma^{2}} \left\|\mathit{f}_{m} - \mathit{f}_{0}\right\|_{L^{2}(\mathbb{P}_{x})}^{2} = \frac{n}{2\sigma^{2}} \left\|\mathit{f}_{m}\right\|_{L^{2}(\mathbb{P}_{x})}^{2}. \end{split}$$

where \mathbb{P}_x is Lebesgue (uniform) measure on [0,1].

By our wavelet construction,

$$\frac{n}{2\sigma^2} \|f_{\mathbf{m}}\|_{L^2}^2 \le \frac{n}{2\sigma^2} \cdot 2^{-j(2s+1)} \|\beta_{\mathbf{m}}\|^2 \le \log \# \mathcal{M} \le N \log N$$

Thus,

$$D_{\mathsf{KL}}\left(\mathbb{P}_{f_{\mathbf{m}}} \| \mathbb{P}_{f_0}\right) \leq N \log N$$

Conclusion:

$$\mathcal{R}(n,\mathcal{F}) \gtrsim n^{-\frac{2s}{2s+1}} \tag{24}$$

Proof of linear minimax rate

Assuming $\mathcal{R}(n,\mathcal{F}) \asymp n^{-\frac{2s}{2s+1}}$, we prove that $\mathcal{R}_L(n,\mathcal{F}) \asymp n^{-\frac{2s-2\gamma}{2s+1-2\gamma}}$ where $\gamma = \frac{1}{p} - \frac{1}{p\vee 2}$. By wavelet theory, there is a correspondence between Besov functions and wavelet coefficients:

$$\mathcal{R}_*(n,F) \simeq \tilde{\mathcal{R}}_*(\frac{\sigma}{\sqrt{n}},\Theta^s_{p,q}) := \inf_{\hat{\theta}} \sup_{\Theta^s_{p,q}} \mathbb{E} \|\hat{\theta} - \theta\|_2^2$$

Proof of linear minimax rate

Assuming $\mathcal{R}(n,\mathcal{F}) \asymp n^{-\frac{2s}{2s+1}}$, we prove that $\mathcal{R}_L(n,\mathcal{F}) \asymp n^{-\frac{2s-2\gamma}{2s+1-2\gamma}}$ where $\gamma = \frac{1}{p} - \frac{1}{p \vee 2}$. By wavelet theory, there is a correspondence between Besov functions and wavelet coefficients:

$$\mathcal{R}_*(n,F) \simeq \tilde{\mathcal{R}}_*(\tfrac{\sigma}{\sqrt{n}},\Theta^s_{p,q}) := \inf_{\hat{\theta}} \sup_{\Theta^s_{p,q}} \mathbb{E} \|\hat{\theta} - \theta\|_2^2$$

Quadratic hull:

$$Q\mathrm{Hull}(\Theta) = \{\theta : \theta^2 \in \mathrm{Hull}(\Theta_+^2)\}\$$

Assuming $\mathcal{R}(n,\mathcal{F}) \asymp n^{-\frac{2s}{2s+1}}$, we prove that $\mathcal{R}_L(n,\mathcal{F}) \asymp n^{-\frac{2s-2\gamma}{2s+1-2\gamma}}$ where $\gamma = \frac{1}{p} - \frac{1}{p \vee 2}$. By wavelet theory, there is a correspondence between Besov functions and wavelet coefficients:

$$\mathcal{R}_*(n,F) \simeq \tilde{\mathcal{R}}_*(\tfrac{\sigma}{\sqrt{n}},\Theta^s_{p,q}) := \inf_{\hat{\theta}} \sup_{\Theta^s_{0,q}} \mathbb{E} \|\hat{\theta} - \theta\|_2^2$$

Quadratic hull:

$$Q$$
Hull $(\Theta) = \{\theta : \theta^2 \in Hull(\Theta_+^2)\}$

(2) [Donoho-Liu-MacGibbon, Annals-Stat '90] showed that

$$\mathcal{Q}\mathrm{Hull}(\Theta^s_{p,q}) = \Theta^{s-\gamma}_{p\vee 2,q\vee 2}$$

and

$$\tilde{\mathcal{R}}_L(\varepsilon,\Theta) = \tilde{\mathcal{R}}_L(\varepsilon,\mathcal{Q}\mathrm{Hull}(\Theta)), \quad \text{and} \quad \tilde{\mathcal{R}}_L(\varepsilon,\mathcal{Q}\mathrm{Hull}(\Theta)) \simeq \tilde{\mathcal{R}}(\varepsilon,\mathcal{Q}\mathrm{Hull}(\Theta))$$

Assuming $\mathcal{R}(n,\mathcal{F}) \asymp n^{-\frac{2s}{2s+1}}$, we prove that $\mathcal{R}_L(n,\mathcal{F}) \asymp n^{-\frac{2s-2\gamma}{2s+1-2\gamma}}$ where $\gamma = \frac{1}{p} - \frac{1}{p \vee 2}$. By wavelet theory, there is a correspondence between Besov functions and wavelet coefficients:

$$\mathcal{R}_*(n,F) \simeq \tilde{\mathcal{R}}_*(\tfrac{\sigma}{\sqrt{n}},\Theta^s_{p,q}) := \inf_{\hat{\theta}} \sup_{\Theta^s_{p,q}} \mathbb{E} \|\hat{\theta} - \theta\|_2^2$$

Quadratic hull:

$$Q$$
Hull $(\Theta) = \{\theta : \theta^2 \in Hull(\Theta_+^2)\}$

[Donoho-Liu-MacGibbon, Annals-Stat '90] showed that

$$\mathcal{Q}\mathrm{Hull}(\Theta^s_{p,q}) = \Theta^{s-\gamma}_{p\vee 2,q\vee 2}$$

and

$$\tilde{\mathcal{R}}_L(\varepsilon,\Theta) = \tilde{\mathcal{R}}_L(\varepsilon,\mathcal{Q}\mathrm{Hull}(\Theta)), \quad \text{and} \quad \tilde{\mathcal{R}}_L(\varepsilon,\mathcal{Q}\mathrm{Hull}(\Theta)) \simeq \tilde{\mathcal{R}}(\varepsilon,\mathcal{Q}\mathrm{Hull}(\Theta))$$

ullet Thus, for $p \leq q < 2$, we have the (suboptimal) linear rate

$$\mathcal{R}_L(n,\mathcal{F}) \simeq \tilde{\mathcal{R}}_L(\varepsilon_n,\Theta_{p,q}^s) = \tilde{\mathcal{R}}_L(\varepsilon_n,\mathcal{Q}\mathrm{Hull}(\Theta_{p,q}^s)) = \tilde{\mathcal{R}}_L(\varepsilon_n,\Theta_{2,2}^{s-\gamma}) \asymp \tilde{\mathcal{R}}(\varepsilon_n,\Theta_{2,2}^{s-\gamma}) \asymp n^{-\frac{2s-2\gamma}{2s+1-2\gamma}}$$
 along the sequence $\varepsilon_n = \frac{\sigma}{\sqrt{n}}$

- Construction of the estimator:
 - **①** Apply discrete wavelet transform on y_i with suitable wavelet (e.g., Daubechies, Meyer), *i.e.*, $\theta_j = W_j Y$; W_j : an orthogonal matrix corresponding to the discrete wavelet transform operator at jth level. Obtain θ_j up to $j = -1, \ldots, (\log n 1)$ th level.
 - **@** Apply thresholding to θ_{jk} with the certain threshold λ ; denote $\delta_{\lambda}(\theta_{jk})$. See Figure 2.

 Hard thresholding:

$$\delta_{\lambda}(z) = z \mathbb{1}_{\{|z| > \lambda\}}.$$

Soft thresholding:

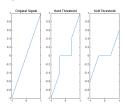
$$\delta_{\lambda}(z) = \operatorname{sgn}(z)\sigma(|z| - \lambda).$$

3 Apply inverse wavelet transform using $\delta_{\lambda}(\theta_{ik})$, *i.e.*,

$$\widehat{f}^{\lambda}(x) = \sum_{i=-1}^{\log n - 1} \sum_{k=1}^{2^{j}} \delta_{\lambda}(\theta_{jk}) \psi_{jk}(x).$$

for
$$\lambda = (\lambda_{jk})_{j,k}$$
.

• Thresholding works like 'denoising'.



- The proof consists of the following steps:
 - ① Instead of the original problem *i.e.*, estimating f^* given D_n , consider a 'Gaussian white noise model' in a sequence space; \hat{f}^{λ} has a counterpart $\hat{\theta}^{\lambda}$ in the Gaussian white noise model.
 - ② Show $\exists \lambda^*$ s.t. $\widehat{\theta}^{\lambda^*}$: minimax optimal for the Gaussian white noise model.
 - . Here, use equivalence between minimax risk and minimax Bayes risk:

$$\begin{split} \inf_{\widehat{\theta}} \sup_{\theta \in \Theta_{p,q}^{\mathtt{S}}} \left\| \widehat{\theta} - \theta \right\|^2 &= \mathcal{R}(\epsilon, \Theta_{p,q}^{\mathtt{S}}) \times \mathcal{B}(\epsilon, \Theta_{p,q}^{\mathtt{S}}) := \inf_{\widehat{\theta}} \sup_{\mu \in \mathcal{P}(\Theta_{p,q}^{\mathtt{S}})} \mathbb{E}_{\theta \sim \mu} \left\| \widehat{\theta} - \theta \right\|^2, \\ \mathcal{R}_{T}(\epsilon, \Theta_{p,q}^{\mathtt{S}}) \times \mathcal{B}_{T}(\epsilon, \Theta_{p,q}^{\mathtt{S}}) := \inf_{\lambda} \sup_{\mu \in \mathcal{P}(\Theta_{\mathtt{S},q}^{\mathtt{S}})} \mathbb{E}_{\theta \sim \mu} \left\| \widehat{\theta}^{\lambda} - \theta \right\|^2. \end{split}$$

- In fact, Bayes risk < minimax risk always holds (∵ mean < max).
- \bullet \asymp holds for this problem $\because \Theta_{p,q}^s$ is a convex set w.r.t. measures and ℓ^2 loss is lower semi-continuous.
- **Show Gaussian white noise model** \approx the original problem.
- $\bullet \ \Rightarrow \mathcal{R}_T(\textit{n},\mathcal{F}) \lesssim \mathcal{R}_T(\epsilon,\Theta^s_{\textit{p},\textit{q}}) \lesssim \mathcal{R}(\epsilon,\Theta^s_{\textit{p},\textit{q}}) \asymp \mathcal{R}(\textit{n},\mathcal{F}) \text{ when } \epsilon = \sigma/\sqrt{\textit{n}}.$

Gaussian white noise model in sequence space:

$$\begin{aligned} y_I &= \theta_I + z_I \\ I &\in \mathcal{I} = \cup_{j \geq -1} \mathcal{I}_j, \qquad \mathcal{I}_j = \left\{ I_{jk} = \left[\frac{k-1}{2^j}, \frac{k}{2^j} \right] \right\}_{k=1, \dots, 2^j} \\ z_I &\stackrel{i.i.d}{\sim} N(0, \epsilon^2). \end{aligned}$$

- $\widehat{\theta}_I^{\lambda} = \delta_{\lambda_I}(y_I)$ in the sequence model corresponds to \widehat{f}^{λ} in the previous slides.
- We first show

$$\mathcal{R}_{\mathcal{T}}(\epsilon, \Theta_{p,q}^{s}) := \min_{\substack{\lambda \\ \widehat{\theta}^{\lambda} \in \Theta_{p,q}^{s}}} \mathbb{E} \left\| \widehat{\theta}^{\lambda} - \theta \right\|_{2}^{2} \leq C_{p} \mathcal{R}(\epsilon, \Theta_{p,q}^{s})$$

as $\epsilon \to 0$. Here, Θ is some ball of wavelet sequence w.r.t. wavelet sequence Besov norm; see (DJ98)[Equation (6)].

- Proof for the sequence model: $\mathcal{R}_T(\epsilon, \Theta_{p,q}^s) \lesssim \mathcal{R}(\epsilon, \Theta_{p,q}^s)$
 - **1** There exists a prior distribution $\mu^* \in \mathcal{P}(\Theta_{p,q}^s)$ such that $\mathcal{R}_{\mathcal{T}}(\epsilon,\Theta)$ is equal to a Bayes risk w.r.t. $\mu^* = (\mu_I^*)_{I \in \mathcal{T}}$, i.e.,

$$\mathcal{R}_{T}(\epsilon, \Theta_{p,q}^{s}) \asymp \mathcal{B}_{T}(\epsilon, \Theta_{p,q}^{s}) = \sum_{l} \max_{\mu_{I} \in \mathcal{P}(\Theta)} \underbrace{\inf_{\lambda_{I}} \underbrace{\mathbb{E}_{\theta_{I} \sim \mu_{I}} \left| \delta_{\lambda_{I}}(y_{I}) - \theta_{I} \right|^{2}}_{:=\rho(\mu_{I})} = \sum_{l} \rho(\mu_{I}^{*}).$$

This is proven by showing the target functional has a saddle point (λ_I^*, μ_I^*) .

- Θ $\Theta_{p,q}^s$ being some ball implies $\mu \in \mathcal{P}(\Theta_{p,q}^s)$ has a finite pth moment, i.e., $\tau = (\tau_l)_{l \in \mathcal{I}}$ has a finite Besov norm, where $\tau_I = \mathbb{E} \left| \theta_I \right|_p$. This implies $\rho(\mu_I^*) \leq \inf_{\lambda_I} \sup_{\mathbb{E}_{\mu_I} \left| \theta_I \right|_1 \leq \tau_I} \mathbb{E}_{\theta_I} \left| \delta_{\lambda_I}(y) - \theta_I \right|^2$.
- (DJ94) showed for some $C_p > 0$, the minima λ_l^* satisfies

$$\sup_{\mathbb{E}_{\mu_I} \left| \theta_I \right|_p \leq \tau_I} \mathbb{E}_{\theta_I} \left| \frac{\delta_{\lambda_I^*}(y_I) - \theta_I}{\delta_{\lambda_I^*}(y_I)} - \theta_I \right|^2 \leq C_p \sup_{\mathbb{E}_{\mu_I} \left| \theta_I \right|_p \leq \tau_I} \mathbb{E}_{\theta_I \sim \mu_I} \left| y_I - \theta_I \right|^2.$$

- **①** Lastly, minimax risk upper bounds Bayes risk, i.e., the \sum_{l} RHS $\leq C_p \mathcal{R}(\epsilon, \Theta_{p,a}^s)$.
- $\mathcal{R}_T(\epsilon, \Theta_{p,q}^s) \leq C_p \mathcal{R}(\epsilon, \Theta_{p,q}^s).$

 Asymptotic equivalence between function estimation problem and sequence model: Our final step is to show

$$\mathcal{R}_T(n,\mathcal{F}) \lesssim \mathcal{R}_T(\sigma/\sqrt{n},\Theta_{p,q}^s)$$

In fact, \approx holds, but we omit \gtrsim part.

1 Given $x_i = i/n$, there exists a smooth interpolation of $f(x_i)$ called Deslauriers-Dubuc interpolant $\widetilde{f}:[0,1] \to \mathbb{R}.$ Such interpolant satisfies

$$\sup_{f^* \in \mathcal{F}} \mathbb{E}_{D_n} \left\| \widehat{f} - f^* \right\|_{L^2([0,1])}^2 \approx \sup_{f \in \mathcal{F}} \mathbb{E} \left\| \widehat{f} - \widetilde{f} \right\|_{L^2([0,1])}^2$$

as $n \to \infty$ (P_x being uniform is used here).

- ② Isometry property of the wavelet gives $\|\widehat{f} \widetilde{f}\|_{2}^{2} = \|\widehat{\theta}^{\lambda} \widetilde{\theta}\|_{2}^{2}$.
- $\widetilde{\theta}$ is the Gaussian white noise model of

$$\widetilde{y}_I = \widetilde{\theta}_I + \epsilon_n \widetilde{z}_I, \quad I \in \cup_{i=-1}^{\log n-1} \mathcal{I}_j.$$

The specific choice of the interpolation and the optimal $\lambda = \lambda^*$ induces $\epsilon_n = C\sigma/\sqrt{n}$ and $\widetilde{\theta}_I \in C\Theta_{p,q}^s$ for some (possibly different) C > 0.

- $\bullet \ \, \therefore \sup\nolimits_{\theta \in \Theta_{p,q}^{\mathtt{s}}} \mathbb{E} \left\| \widehat{\theta}^{\lambda^*} \widetilde{\widehat{\theta}} \right\|_{2}^{2} = \mathcal{R}_{T}(\epsilon_{n}, \mathsf{C}\Theta_{p,q}^{\mathtt{s}}) \asymp \mathcal{R}_{T}(\sigma/\sqrt{n}, \Theta_{p,q}^{\mathtt{s}}) \lesssim \mathcal{R}(\sigma/\sqrt{n}, \Theta_{p,q}^{\mathtt{s}}) \asymp \mathcal{R}(n, \mathcal{F}).$ Here, the optimality of λ^* and the scaling property of \mathcal{R} was used.
- In conclusion, there exists λ^* s.t. $\sup_{f^*} \mathbb{E} \left\| \widehat{f}^{\lambda^*} f^* \right\|^2 \lesssim \mathcal{R}(n, \mathcal{F})$.

Proof of minimax rate (upper bound)

- To finalize the result, it is sufficient to obtain $\mathcal{R}(\epsilon, \Theta_{p,q}^s)$'s upper bound.

 - 2 Observe this structure can be decomposed, i.e.,

$$\begin{split} \inf_{\widehat{\theta}} \sup_{\mu \in \mathcal{P}(\Theta_{p,q}^{\mathbf{S}})} \mathbb{E}_{\theta \sim \mu} \mathbb{E}_{y_{l}} \left\| \widehat{\theta} - \theta \right\|_{2}^{2} &\leq \sum_{l} \inf_{\widehat{\theta}} \sup_{\mu_{l}} \mathbb{E}_{\theta_{l} \sim \mu_{l}} \left| \widehat{\theta}_{l} - \theta_{l} \right|^{2} \\ &\leq \sum_{l} \inf_{\widehat{\theta}} \sup_{\mu_{l} \text{ s.t. pth moment of } \mu_{l} \text{ is } \tau_{l} \in \Theta_{p,q}^{\mathbf{S}}} \mathbb{E}_{\theta_{l} \sim \mu_{l}} \mathbb{E}_{y_{l}} \left| \widehat{\theta}_{l} - \theta_{l} \right|^{2} \\ &= \rho(\tau_{l}, \epsilon) \end{split}.$$

- ① The above problem becomes solving the constraint optimization $\min \rho(t,\epsilon)$ given $|t|_{b^s_{p,q}} \leq C$. One can solve such optimization using the calculation rule for $\rho(t,\epsilon)$ for this specific Gaussian white noise model (DJ94).
- $\textbf{ § Solving the optimization problem induces } \mathcal{B}(\epsilon,\Theta^s_{p,q}) \lesssim \epsilon^{\frac{4s}{2s+1}}.$
- $:: n^{-\frac{2s}{2s+1}} \lesssim \mathcal{R}(n,\mathcal{F}) \lesssim \mathcal{R}(\sigma/\sqrt{n},\Theta_{p,q}^s) \lesssim n^{-\frac{2s}{2s+1}}$
- Remark: This is 'not' a typical strategy in Statistics. Instead, one directly calculates the
 upper bound of the certain estimator and show it matches to the lower bound; for the
 wavelet threshold estimator, e.g., (GN15)[Proposition 5.1.7].

Total summary of the proof

•
$$n^{-\frac{2s}{2s+1}} \lesssim \mathcal{R}(n,\mathcal{F}) \lesssim \mathcal{R}_{\mathcal{T}}(n,\mathcal{F}) \lesssim \mathcal{R}_{\mathcal{T}}(\sigma/\sqrt{n},\Theta_{p,q}^s) \lesssim \mathcal{R}(\sigma/\sqrt{n},\Theta_{p,q}^s) \lesssim n^{-\frac{2s}{2s+1}}$$
.

- (1): the lower bound proof.
- (2): the definition of the minimax rate.
- (3): the equivalence between estimation and Gaussian white noise model.
- (4): optimality of the wavelet estimator.
- (5): upper bound analysis.
- $:: \mathcal{R}(n,\mathcal{F}) \asymp \mathcal{R}_T(n,\mathcal{F}) \asymp n^{-\frac{2s}{2s+1}}$

Theorem

If we consider $\Omega = [0,1]^d$ instead of [0,1], the minimax rate for $\mathcal{B}^s_{p,q}(\Omega)$ with s>d/p is

$$\mathcal{R}(n,\mathcal{F}) \gtrsim n^{-\frac{2s}{2s+d}}$$
.

- The proof goes the same as earlier minimax proof; consider $f_m(x) = \epsilon 2^{-j(s+1/2)} \sum_k \beta_{mk} \psi_{jk}(x)$, where ψ_{jm} forming a wavelet basis of $L^2(\Omega)$. In this case, at jth resolution level there are now $C2^{jd}$ wavelet coefficients. The rest goes the same.
- The minimax optimality of the wavelet threshold estimator can be analyzed in d > 1 as well, but practically such estimator is not desirable as the number of wavelet coefficients grows exponentially w.r.t d.
- ... we want to consider the alternative estimator.

Estimation error with DNN estimators.

 Let Φ(L, W, S, B) be a L-layer W-width ReLU Deep neural network with the following structure:

$$\Phi(L, W, S, B)(x) = \left[\left(W^{(L)}(\cdot) + b^{(L)} \right) \circ \sigma \cdots \circ \sigma \circ \left(W^{(1)}(\cdot) + b^{(1)} \right) \right] (x). \tag{25}$$

- L: Neural network depth.
- W: Neural network width, i.e., $W^{(l)} \in \mathbb{R}^{W \times W}$, $b^{(l)} \in \mathbb{R}^{W}$ for all $l = 1, \dots, L$.
- S: Sparsity parameter, i.e., $\sum_{l=1}^{L} \left[\left\| W^{(l)} \right\|_{0} + \left\| b^{(l)} \right\|_{0} \right] \leq S$.
- B: Norm constraint, i.e., $\max_{l=1,\ldots,L} \left[\left\| W^{(l)} \right\|_{\infty}, \left\| b^{(l)} \right\|_{\infty} \right] \leq B$.
- σ: ReLU activation.

• Consider the problem of estimating $f^* \in B_{B^s_{p,q}(\Omega)}(0,1) \cap B_{L^{\infty}(\Omega)}(0,F)$ for some F > 0, with the data $y_i = f^*(x_i) + \eta_i$ with $\eta_i \overset{i.i.d}{\sim} N(0,\sigma^2)$ and $x_i \overset{i.i.d}{\sim} P_x$ where $supp(P_x) \subseteq \Omega = [0,1]^d$.

Theorem (DNN estimator of Besov function)

Let $\widehat{f} := \operatorname{argmin}_{h \in \Phi(L,W,S,B)} \sum_{i=1}^{n} |y_i - h(x_i)|^2$, called Empirical Risk Minimizer (ERM) with L,W,S,B that depends on n,s,d,p. For all $f^* \in B_{B_{p,q}^s(\Omega)}(0,1) \cap B_{L^{\infty}(\Omega)}(0,F)$ with some F > 0,

$$\mathbb{E}_{D_n} \left\| f^* - \widehat{f} \right\|_{L^2(P_X)}^2 \lesssim n^{-\frac{2s}{2s+d}} (\log n)^3.$$

- The proof consists of two ingredients:
 - ullet Approximation of a Besov function f^* by some DNN \widetilde{f} . \widetilde{f} may depends on f^*
 - Statistical learning theory to control the error between \widehat{f} and the best approximator \widetilde{f} for any choice of \widetilde{f} .
 - $\bullet \ \, \text{Total error} \, \left\| f^* \widehat{f} \right\| \text{ is bounded by the above two errors:} \, \left\| f^* \widetilde{f} \right\|, \left\| \widetilde{f} \widehat{f} \right\|.$

• Optimal approximation error: For sufficiently large $N \in \mathbb{N}$, there exists L, W, S, B that depends on N, d, s, p s.t.

$$\sup_{f^* \in B_{B_{p,q}(\Omega)}(0,1)} \inf_{\widetilde{f} \in \Phi(L,W,S,B)} \left\| \widetilde{f} - f^* \right\| \lesssim N^{-\frac{s}{d}}.$$

- Basic strategy: two-stage approximation: $B_{p,q}^s(\Omega) \approx \text{B-spline functions} \approx \Phi(L,W,S,B)$.
 - B-spline functions:
 - Fix m and consider

$$N_m(x_i) := \underbrace{\left(\underbrace{\mathbb{1}_{[0,1]} * \mathbb{1}_{[0,1]} * \cdots * \mathbb{1}_{[0,1]}}_{(m+1) \text{ times}}\right)(x_i)}.$$

- N_m(x) is a piecewise polynomial of the order m.
- The following basis is called B-spline.

$$M_{k,j}^{m,d}(x) := \prod_{i=1}^d N_m(2^{k_i}x_i - j_i).$$

One can think of i as a location parameter and k as spatial resolution (just like a wavelet).

- $B_{p,q}^s(\Omega) \approx \text{B-spline}$ is well established in (DP88).
- B-Spline $\approx \Phi(L, W, S, B)$ is from the following observations:
 - For some M > 0, write $\phi_{(0,M)}(x) := \sigma(x) \sigma(x-M) = M \wedge \sigma(x)$.
 - Observe $N_m(x)$ has the form

$$N_m(x) = \frac{1}{m!} \sum_{j=0}^{m+1} (-1)^j \binom{m+1}{j} (m+1)^m \left(\phi_{(0,1-\frac{j}{m+1})} \left(\frac{x-j}{m+1} \right) \right)^m.$$

We focus on approximating $\left(\phi_{\left(0,1-\frac{j}{m+1}\right)}\left(\frac{x-j}{m+1}\right)\right)^m$. Once this is possible, approximating the linear combination is doable.

• (Yar17) showed for some $D \in \mathbb{N}$ there exists $\psi : \mathbb{R}^D \to \mathbb{R} \in \Phi(L_1, W_1, S_1, B_1)$ for some L_1, W_1, S_1, B_1 that depends on m and ϵ such that

$$\sup_{x \in [0,M]} \left| \psi \underbrace{\left(\phi_{(0,M)} \left(\frac{x}{M} \right), \dots, \phi_{(0,M)} \left(\frac{x}{M} \right) \right)}_{m \text{ times. Write this function as } \psi \circ \phi_{(0,M)}(x/M)}_{(0,M)(x/M)} - \left(\phi_{(0,M)} \left(\frac{x}{M} \right) \right)^m \right| \leq \epsilon$$

ullet Therefore, the reasonable construction of the approximator of $N_m(x)$ will be

$$f(x) = \frac{1}{m!} \sum_{j=0}^{m+1} (-1)^j \binom{m+1}{j} (m+1)^m \left(\psi \circ \phi_{(0,1-\frac{j}{m+1})} \left(\frac{x-j}{m+1} \right) \right).$$

• Then, one can appropriately manipulate ψ and f to make $M_{0,0}^{m,d}(x)$.

• For any F > 0 and any function space $\mathcal{F} \subseteq B_{L^{\infty}(\Omega)}(0, F)$, there exists the following generalization gap type bound:

$$\mathbb{E}_{D_n} \left\| f^* - \widehat{f} \right\|_{L^2(P)}^2 \le C \left(\underbrace{\inf_{\underline{f} \in \mathcal{F}} \| f^* - f \|_{L^2(P)}^2}_{\approx \| f^* - \widetilde{f} \|} + \underbrace{(F^2 + \sigma^2) \frac{\log N(\mathcal{F}, \delta, \| \cdot \|_{\infty})}{n} + \delta(F + \sigma)}_{\approx \| \widehat{f} - \widetilde{f} \|} \right).$$

Proof strategy:

- Substitute \hat{f} to the closest δ-minimal covering of \mathcal{F} and use the fact $\mathcal{F} \subseteq B_{L^{\infty}(\Omega)}(0, F)$ to bound the population risk by the empirical risk (Hardest part).
- **3** Bound the empirical risk in terms of the optimal recovery error: By using the fact that \hat{f} is ERM.
- Set $\mathcal{F} = \Phi(L, W, S, B) \cap B_{L^{\infty}(\Omega)}(0, F)$, and then the covering number analysis will give the following:

$$\log N\left(\Phi(L,W,S,B),\delta,\left\|\cdot\right\|_{\infty}\right) \leq 2SL\log\left((B\vee 1)(W+1)\right) + S\log\left(\frac{L}{\delta}\right).$$

- This result is from using Lipschitz continuity of ReLU repeatedly for each layer.
- Set $\delta = 1/n$ in Step 1's RHS;

Ingredient II: Statistical learning II

- Apply (1) the approximation result to get $\inf_{f \in \mathcal{F}} \|f^* f\|_{L^2(P)}^2 \lesssim N^{-\frac{s}{d}}$, and (2) the covering number bound obtained in Step 2 with specific L, W, S, B in approximation result.
- Then, optimizing the RHS w.r.t. N will induce the claimed bound with $N \asymp n^{rac{d}{2s+d}}$.

Limitations of DNN estimator

- How to actually train such neural network?
 - Solving constraint optimization.
 - Can we solve this is plain unconstraint optimization, possibly with a regularizer?
 - Constraints are used in two parts:
 - Approximation: This is to avoid the overfitting to the noise.
 - Learning: To bound the covering number, which controls the generalization bound.
 - It is not immediate how to avoid such constraints in approximation stage. On the other hand, there
 are alternative approaches to obtain a generalization bound (e.g., Rademacher complexity, VC
 dimensions) to avoid the constraint. Can we utilize those?
- Adaptivity
 - Constructing $\Phi(L,W,S,B)$ requires the prior knowledge on the regularity of the P^* ; e.g., choices of L,W,S,B require s,p. This makes the estimation non-adaptive.

Thank You For Your Attention!

- [DJ94] David L. Donoho and Iain M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika 81 (1994), 425–455.
- [DJ98] ______, Minimax estimation via wavelet shrinkage, The Annals of Statistics 26 (1998), no. 3, 879 – 921.
- [DP88] R. A. Devore and V. Popov, Interpolation of besov spaces, American Mathematical Society 305 (1988), 397 – 414.
- [GN15] Evarist Giné and Richard Nickl, Mathematical foundations of infinite-dimensional statistical models, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2015.
- [Yar17] Dmitry Yarotsky, Error bounds for approximations with deep relu networks, 2017.