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Introduction

Park (TAMU) Optimal recovery & Minimax estimation 3 / 27



Problem setting

Fundamental problem in Statistics: Regression.

Let Ω ⊂ Rd : bounded set with sufficient regularity (open, simply connected, Lipschitz boundary ∂Ω).
An unknown function f ∈ K , where K is some compact set on Lq(Ω). K is dubbed model space.
Given: Domain data X = {xi}i=1,...,m and corresponding noisy function data

y = {f (xi ) + ηi}i=1,...,m, where ηi
i.i.d∼ N(0, σ2) is a noise.

Goal: With the fixed the domain data X , find an algorithm A which finds the ‘best’ approximator of
f ∈ K .

A : Rm → Lq(Ω).

The performance criterion is based on the worst-case Lq(Ω) risk:

EA(K ;σ,X )q := sup
f∈K

Eηi
∥f − A(y)∥Lq (Ω) .

Minimax risk: the optimal worst-case risk over all possible choices of X and A:

Rm(K ;σ) := inf
A,X

EA(K ;σ,X )q.

Indicates the information theoretical lower bound; one cannot make a better algorithm.
Optimal recovery: Rm(K ; 0); purely deterministic setting.
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Motivation of the study

Consider the case Ω = [0, 1]d , K = Bs
τ (Lp(Ω)).

Known minimax rate (DJ98; GN15):

Rm(K ;σ)2 ≍ m− s
2s+d .

Known (non-adaptive, i.e., fixed X ) optimal recovery rate (NT06; KNS21; BDPS25):

Rm(K ; 0)2 ≍ m
− s

d
+( 1

p
− 1

2
)+ .

Observe one should have Rm(K ;σ) → Rm(K ; 0) as σ → 0, but m− s
2s+d ↛ m

− s
d
+( 1

p
− 1

2
)+ .

Is the theory wrong?

A: The effect of σ is hidden in the constant.

Conclusion of the paper (DNP+25):

Rm(K ;σ)q ≍ m
− s

d
+( 1

p
− 1

q
)+ +min

{
1, (σ2m−1)

s
2s+d

}
.
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Preliminaries
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Besov space

Besov space: characterizes a function space with some ‘smoothness’.

Fix the domain of X by Ω (which will be (0, 1)d , a unit hypercube later).
For f ∈ Lp(Ω), define the ‘rth-modulus of smoothness’:

wr,p(f , t) := sup
∥h∥≤t

∥∥∆r
h(f )

∥∥
Lp (Ω)

,

where ∆r
h(f )(x) :=

∑r
j=0

(r
j

)
(−1)r−j f (x + jh) if x, x + h ∈ Ω, and 0 otherwise.

E.g. ∆1
h(f )(x) = f (x + h) − f (x); ∆2

h(f )(x) = f (x + 2h) − 2f (x + h) + f (x).

Let r = ⌊s⌋ + 1, and define a Besov semi-norm

|f |Bs
τ (Lp (Ω)) :=


[∫

Ω

(
wr,p (f ,t)

ts

)τ
dt
t

] 1
τ 0 < τ < ∞,

supt>0
wr,p (f ,t)

ts τ = ∞.

If f satisfies ∥f ∥Bs
τ (Lp (Ω)) := ∥f ∥Lp (Ω) + |f |Bs

τ (Lp (Ω)) < ∞, then f is said to be in a Besov space

Bs
τ (Lp(Ω)).

Remark: f ∈ Bs
p,∞ ⇔ wr (f , 2

−k )Lp (Ω) ≲ 2−ks .
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Local polynomial approximation

Pr : A set of algebraic polynomial of degree r − 1.

Some property of Pr :
for all P ∈ Pr wr (P, t)Lp (Ω) = 0.

dim(Pr ) =
(d+r−1

d

)
:= ρ (by classical combinatorics argument).

Polynomial approximation rate: For I ⊂ Ω a cube with the sidelength ℓI , write the error
Er (g , I )p := infP∈Pr ∥g − P∥Lp(I ). Then, Whitney’s theorem (Jackson’s theorem type

result):
cr,d,pEr (g , I )p ≤ wr (g , ℓI )Lp(I ) ≤ Cr,d,pEr (g , I )p .

If Q ∈ Pr satisfies ∥g − Q∥Lp(I ) ≤ c0Er (g , I ), it is called near approximation.

If Q ∈ Pr is near best Lp(I ) approximation, then it is near best approximation on the larger
cube J and larger p̄ ≥ p.

(∵) Application of quasi-norm version triangular inequality, relationship between Lp and Lp̄ , Q being
polynomial, and Hölder.
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Polynomial norms

Normalized Lp norm:

∥g∥∗Lp(I ) := |I |−
1
p ∥g∥Lp(I ) .

Using the equiavlence between Lp and Lq in finite dim space Pr ,

∥P∥∗
Lq (I )

≤ C ∥P∥∗
Lp (I )

.

In particular, ∥P∥Lq (I )
≤ C |I |

1
q
− 1

p ∥P∥Lp (I )
for q ≥ p.
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Piecewise polynomial approximation I

Dk : set of dyadic cubes I ⊂ Ω of sidelength 2−k .

Sk (r): A space of r order Dk -piecewise polynomials.

Then,

f ∈ Bs
p,∞(Ω) ⇔ d(f ,Sk (r))Lp(Ω) ≤ |f |Bs

p,∞(Ω) 2
−ks .

(Finite element method type argument)

Least square approximation Sk f ∈ Sk (r) for the target f from the observation on the grid:

Suppose we once more decompose each I into ℓI/N side length grid Λ for some N > ρ1/d ;

e.g., for I = [0, ℓI )
d , Λ =

{
0,

ℓI
N , . . . , ℓI (1 − 1

N )
}d

.

Can define a Hilbert space L2(µN ) with µN := 1

Nd

∑
zi∈Λ δzi , the empirical probability measure.

Pr ⊂ L2(µN ) ⇒ Q1, . . . ,Qρ ∈ Pr : Orthonormal system of L2(µN ).
PI f :=

∑ρ
j=1 ⟨f ,Qj⟩L2(µN ) Qj : Least-square approximation of f |I to Pr (classical result from Hilbert

space theory).
For k ≤ n − r , Sk f :=

∑
I∈Dk

(PI f )χI .
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Piecewise polynomial approximation II

(DNP+25)[Lemma 2.2]: ∥f − Sk f ∥Lq(Ω) ≤ C |f |Bs
p,∞(Ω) 2

−ks+kd( 1
p
− 1

q
)+ .

The proof is generalization of interpolating polynomial proof discussed in the class.

f = S0f +
∑∞

k=1(Sk f − Sk−1f ) ⇒ ∥f − Sk f ∥ ≤
∑

j>k ∥Sj f − Sj−1f ∥Lq (Ω).

Use the Lp, Lq-norm equivalence and triangular inequality to write the bound w.r.t. d(f ,Sk (r))Lp (Ω).

|f |Bs
p,∞

2−ks term comes from d(f ,Sk (r))Lp (Ω) ≤ |f |Bs
p,∞

wr (f , 2
−k )Lp (Ω).

2
kd( 1

p
− 1

q
)+ term comes from ∥P∥Lq (I )

≤ C |I |
1
q
− 1

p ∥P∥Lp (I )
= C2

kd( 1
p
− 1

q
) ∥P∥LQ (I ) for P ∈ Pr .

The noisy version counterpart will be denoted ·̃ (e.g., S̃ky).
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Main result
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Assumptions

Ω = (0, 1)d .

ηi
i.i.d∼ (0, σ2) be a sub-Gaussian distribution.

The model space K = U(Bs
p,τ (Ω)).

0 < p, τ ≤ ∞, p ≤ q ≤ ∞, s > 0, s > d/p, q < p + 2 sp
d
.

s > d/p is required to make f ∈ K to be continuous (Sobolev embedding).

q < p + 2 sp
d ensures the minimax rate to be m

− s
2s+d (primary case); but this can be dropped

(DNP+25)[Remark 8.1].
p ≥ q case falls down to p = q case.
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OT-ME lower bound

Theorem

(DNP+25)[Theorem 1.3]

Rm(K ;σ) ≳ m
− s

d
+( 1

p
− 1

q
)+ +min

{
1, (σ2m−1)

s
2s+d

}
.

This indicates the information-theoretic lower bound; no algorithm can achieve the faster
rate than this.

Typical approach: create the ‘worst-case’ fA for each algorithm fA.
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OT-ME upper bound

Theorem

(DNP+25)[Theorem 1.1, 1.3] If Xm = Gn :=
{
0, 2−n, . . . , 1− 2−n

}d
for m = 2nd , then for any

α ∈ (0, 2− d(q−p)+
sp

) there exists an algorithm A such that

P
[
∥f − A(y)∥Lq ≥ C

(
m

− s
d
+( 1

p
− 1

q
)+ + t(σ2m−1)

s
2s+d

)]
≤ C exp(−ctα)

for some constant c,C which does not depend on m, σ.
Accordingly,

Rm(K ;σ,Xm) ≲ m
− s

d
+( 1

p
− 1

q
)+ +min

{
1, (σ2m−1)

s
2s+d

}
.

To convert probability bound to expectation bound, there is a canonical formula:
E(X ) =

∫∞
0 P(X > s)ds for X : non-negative random variable.

Remark: For the opposite direction, one can use Markov inequality (in probability theory).

Two theorems together,

Rm(K ;σ) ≍ m
− s

d
+( 1

p
− 1

q
)+ +min

{
1, (σ2m−1)

s
2s+d

}
.
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Proof of lower bound I

For the lower bound, can assume σ2 ≤ m.

Let ϵ := (σ2m−1)
s

2s+d and n be the smallest integer such that n−s ≤ ϵ (think as an equal).

∴ ϵ ≍ σn
d
2 /

√
m.

For fixed Xm, let y(f ) := {f (xi )}i=1,...,m, ỹ(f ) := {f (xi ) + ηi}i=1,...,m.

Want to show: For any algorithm A : Rm → Lq(Ω) there exists fA ∈ K s.t.

Eη ∥fA − A(ỹ(f ))∥Lq ≳ ϵ

whenever ϵ ≳ m
− s

d
+( 1

p
− 1

q
)+ .

Known fact from OR literature: For any Xm, there exists f , g such that they coincides on

Xm, i.e., y(f ) = y(g), but ∥f − g∥Lq ≳ m
− s

d
+( 1

p
− 1

q
)+ .

Then,

m
− s

d
+( 1

p
− 1

q
)+ ≲ ∥f − A(ỹ(f ))∥q + ∥A(ỹ(f ))− A(ỹ(g))∥︸ ︷︷ ︸

=0 (∵ y(f )=y(g))

+ ∥g − A(ỹ(g))∥ .

Implying

max
{
E ∥f − A(ỹ(f ))∥q ,E ∥f − A(ỹ(g))∥q

}
≳ m

− s
d
+( 1

p
− 1

q
)+ .

Meaning when ϵ ≤ m
− s

d
+( 1

p
− 1

q
)+ the optimal recovery rate appears.
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Proof of lower bound II

Typical minimax bound methods: Le Cam, Fano, Assouad.

Idea: Estimation and choosing the closest one among sufficiently discretized set is almost
similar.

Goal: Construct a c0ϵ-separated covering FN := {f1, . . . , fN} ⊂ K , i.e.,
∥∥fi − fj

∥∥
q
≥ c0ϵ for

all i , j ≤ N ⇒ we choose fA among fi ’s.

Let ϕ ∈ C∞
c ([0, 1]d ) s.t. ∥ϕ∥∞ = 1, ∥ϕ∥Bs

p,τ
:= M < ∞.

Shift and scale this function to the cubes of side length 1/n Q1, . . . ,Qnd (n defined in the
above). ϕi (·) = γn−sϕ(n(· − Bottom left corner of Qi )). γ will be chosen later to match
quantities.

Result from combinatorics: there exists S ⊂ {±1}n
d
such that |S| ≥ 2cn

d
and for all

a ̸= b ∈ S ∥a− b∥ℓ1 ≥ cnd ; cnd -separating.

Meaning: Many but still well-separated.
e.g., nd = 2, then ∥(1, 1) − (1, 0)∥ℓ1

≥ 2.
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Proof of lower bound III

FN :=
{
f =

∑nd

i=1 κiϕi | (κ1, . . . , κnd ) ∈ S
}

with N = |S | ≥ 2cn
d
. γ is chosen to make

FN ⊂ K (see Figure 1).

Figure 1: Example of f ∈ FN .

Now, all fi ̸= fj ∈ FN satisfy

∥fi∥∞ ≤ cγn−s ≤ cγϵ. ⇒ ∥y(fi )∥ℓ2 ≤ c
√
mγϵ.

∥fi − fj∥q ≥ cγϵ (any c ≤ nd will work).

By setting γ small enough,

Known metric entropy ϵlog2 N (K)Lq ≍ (log2 N)−
s
d ≥ cn−s ≥ cϵ indicates FN is a cϵ-separated

covering of K .

∥y(fi )∥ℓ2 < σ
√

log(N/5).
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Proof of lower bound IV

We have cϵ-separated covering FN . Now, consider

Bi := A−1
({

g ∈ Lq | ∥fi − g∥q <
cϵ

2

})
⊂ Rm.

Bi means a region where the algorithm A chooses fi among FN .

Since FN is a covering,
∐

i Bi = Rm.

We will show Bi has a small measure.

There exists i such that PN(0,σ2)(Bi ) ≤ 1
N
.

∵
∑N

i=1 PN(0,σ2)(Bi ) = PN(0,σ2)(
∐

i Bi ) = 1.

Known Lemma: If PN(0,σ2)(Bi ) ≤ 1
N

and ∥y(fi )∥ < σ
√

log(N/5), then PN(y(fi ),σ
2)(Bi ) <

1
2
.

This means any algorithm A has the corresponding fi ; while data is from fi , the algorithm A
is not likely to choose fi . This is our fA.

Then, Eηi ∥fi − A(ỹ(fi ))∥ =
∫
Bi

∐
Bc
i
∥fi − A(ỹ(f ))∥ ≥ PN(y(fi ),σ

2)(B
c
i )

cϵ
2

≳ cϵ. □
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Proof of upper bound: Explicit algorithm

Main idea: construct an explicit algorithm that achieves the rate.

Construction of the algorithm: Assume Xm be the regular grid.
1 If σ2 ≥ m, then A(y) = 0 (too noisy regime).
2 Otherwise, partition Ω by Dk , a dyadic cube of side length of I ∈ Dk being 2−k .
3 Conduct a least square approximation by Pr , r -degree polynomial with r ≤ n − k (defined above).
4 Consider the orthonormal basis expression of R̃I y := P̃I y − P̃parent(I )y =

∑ρ
j=1 c

∗
I,j (y)QI,j . Compute

c∗I,j (y).
5 Let ĉI,j (y) := Thresholdingλk

(c∗I,j (f )). Construction of λk is as follows:

Let k∗ be an integer s.t. 2k
∗−1 < ϵ−1/s < 2k

∗
.

λk := 0 if k ≤ k∗ and 2βk−βk∗−sk∗ otherwise. β is chosen to satisfy α = 2β−d
β+δ

for some δ ∈ (0, d
2
)

(Recall: α is tail prob we control).

6 T̂ky =
∑

I∈Dk

(∑ρ
j=1 ĉI,j (y)QI,j

)
χI , and f̂ = A(y) =

∑n−r
k=0 T̂ky .

Remark: s, σ2 must be known a priori (to find k∗ and therefore construct λk ).
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Proof of upper bound: Rate analysis I

One can view Tk = Sk f − Sk−1f .∥∥∥f̂ − f
∥∥∥
q
=

∥∥∥f −
∑n−r

k=0 T̂ y
∥∥∥ =

∥∥∥∑n−r
k=0 Tk f + Sn−r f −

∑n−r
k=0 T̂ky

∥∥∥ ≤

∥f − Sn−r f ∥q +
∑n−r

k=0

∥∥∥Tk f − T̂ky
∥∥∥.

First term comes directly from approximation by least square:

≲ 2
−(n−r)(s−d( 1

p
− 1

q
)+)

≲ m
−(s−d( 1

p
− 1

q
)+)

.

The second term, as QI ,j is an orthonormal system,

∥∥∥Tk f − T̂ky
∥∥∥q
q
≲

∑
I∈Dk

 ρ∑
j=1

∣∣cI ,j (f )− ĉI ,j (y)
∣∣q |I | ≲ 2−kd

∑
I∈Dk

 ρ∑
j=1

∣∣cI ,j (f )− ĉI ,j (y)
∣∣q .

For notational simpliicty, we aggregate νk := (cI ,j )I∈Dk ,j∈ρ. Then, one can show

2−kd
∑
I∈Dk

 ρ∑
j=1

∣∣cI ,j − ĉI ,j
∣∣ ≤ ∥νk − ν̂k∥∗q :=

 1

Lk

Lk∑
l=1

|(νk )l − (ν̂k )l |q
1/q

.

In sum, we have ∥∥∥f̂ − f
∥∥∥
q
≲ m

−(s−d( 1
p
− 1

q
)+)

+

n−r∑
k=0

∥νk − ν̂k∥∗q .
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Proof of upper bound: Rate analysis II

Goal: bound
∑n−r

k=0 ∥νk − ν̂k∥∗q with high probability.

Using the fact that Tk f is piecewise polynomial and the approximation rate of piecewise
polynomial to Besov space, one can get ∥νk∥∗p ≲ 2−ks (DNP+25)[Lemma 2.3].

Then, using the known properties about thresholding on Gaussian noise ,

∥νk − ν̂k∥∗q ≲ 2
− ksp

q λ
1− p

q

k︸ ︷︷ ︸
Deterministic

+
∥∥ηλk

∥∥∗
q︸ ︷︷ ︸

Stochastic

.

Here, ηλk
is a 0-mean σ2

I ,j ∈ (0,C2−(n−k)dσ2)-variance normal variable thresholded by λk/2.

Sum of determinstic term: interpret as low-signal ⇒ error is at most λk . It is ≲ 2−k∗s ≲ ϵ
by the construction of λk (In fact, λk is chosen to bound this).

The part where λk and s are interacting, via ∥νk∥∗
p .

Sum of stochastic term: interpret as a high noise level. Bounding this with high probability
can be done with classical thresholding analysis result.

Remark: Typical Thresholding analysis was on expectation bound, but (DNP+25) did a probability
bound; this induces the analysis resulting in probability bound rather than expectation.
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Conclusion
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Summary

Interpolating the result between optimal recovery and minimax bound.
Upper bound: by proposing explicit algorithm: Thresholding + least square piecewise polynomial fit.
Lower bound: Converting the estimation problem to choosing one among sufficiently well-discretized
set.

Pros: Explicit algorithm. Simple to implement.

Cons: Need to know s, σ2 a priori to determine the optimal threshold.
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Extension

Theoretical side: More general function space setting.

Algorithmic side: improving algorithms? Or does other existing algorithm acheives the
adaptive tight rate w/o knowledge of σ?

Adaptive to unknown parameters s, σ?
Neural network?
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Thank You For Your Attention!
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