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o Fundamental problem in Statistics: Regression.

Let Q C RY: bounded set with sufficient regularity (open, simply connected, Lipschitz boundary 99).
An unknown function f € K, where K is some compact set on L4(£2). K is dubbed model space.
Given: Domain data X = {x;},_; . and corresponding noisy function data

y =A{f(x) +ni}ti—y . wheren; &7 N(0, o%) is a noise.

Goal: With the fixed the domain data X, find an algorithm A which finds the ‘best’ approximator of
f e K.

AR™ o L,(9Q).
The performance criterion is based on the worst-case Lq(f2) risk:

Ea(K; 0, X)q := sup By, [If — Al y(q) -
fek

Minimax risk: the optimal worst-case risk over all possible choices of X and A:

Rm(K; o) == )‘nj( Ea(K; 0, X)q.

Indicates the information theoretical lower bound; one cannot make a better algorithm.
Optimal recovery: R, (K;0); purely deterministic setting.
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Consider the case Q = [0,1]9, K = B3(L,()).
o Known minimax rate (DJ98; GN15):

Rm(K;0)2 < ==

Known (non-adaptive, i.e., fixed X) optimal recovery rate (NT06; KNS21; BDPS25):
s 1 1
Rom(K;0)2 < m~a (5= 2)+,

Observe one should have Rm(K;0) = Rm(K;0) as o — 0, but mT 5 s m

o Is the theory wrong?
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Motivation of the study

UNIVERSITY

Consider the case Q = [0,1]9, K = B3(L,()).
o Known minimax rate (DJ98; GN15):

Rm(K;0)2 < ==

Known (non-adaptive, i.e., fixed X) optimal recovery rate (NT06; KNS21; BDPS25):
s 1 1
Rom(K;0)2 < m~a (5= 2)+,

Observe one should have Rm(K;0) = Rm(K;0) as o — 0, but m” %5 - m_§+(%_%)+.
o Is the theory wrong?

A: The effect of o is hidden in the constant.

Conclusion of the paper (DNP*25):

s (L1 s
Rm(K;0)q < m~ a9 4 min {1, (6?>m™1)z+d } .
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Besov space

@ Besov space: characterizes a function space with some ‘smoothness’.

o Fix the domain of X by  (which will be (0,1)?, a unit hypercube later).
o For f € LP(Q), define the ‘rth-modulus of smoothness':

wr p(f, t) == ”5l|lP |ag f)”LP @

where AL(F)(x) := 3o7_o () (—=1) T F(x + jh) if x, x + h € Q, and 0 otherwise.
e Eg Ah(f)(x) = f(x + h) — f(x); Af,(f)(x) = f(x + 2h) — 2f(x + h) + f(x).

o Let r = |s| + 1, and define a Besov semi-norm

[ (22220)7 )7 0 <7< o0,
Iles 1o = @ ¢ '

wr p(f,
SUPt>0 r’ig K T = 00.
o If f satisfies HfHBS(Lp(Q)) = Hf||Lp(Q) + |flgs (Lp() < o0 then f is said to be in a Besov space
T T

B; (Lp(Q)).
o Remark: f € B} _ & w,(f,2_k)LP(Q) <27k,
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@ P,: A set of algebraic polynomial of degree r — 1.
@ Some property of P;:
o forall P € P, w, (P, t)Lp(Q) =0.
o dim(P,) = (‘”;71) := p (by classical combinatorics argument).

@ Polynomial approximation rate: For | C Q a cube with the sidelength £;, write the error
E (g,1)p :=infpcp, |lg — P||Lp(,). Then, Whitney's theorem (Jackson’s theorem type
result):

crd,pEr(g,1)p < wr(g, €)1,y < Crod,pEr(g: p-

o If Q € P, satisfies ||g — Q”Lp(l) < cEr(g, 1), it is called near approximation.

o If Q € P, is near best L,(/) approximation, then it is near best approximation on the larger
cube J and larger p > p.

o (") Application of quasi-norm version triangular inequality, relationship between L, and Lz, Q being
polynomial, and Hdlder.
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Polynomial norms

@ Normalized L, norm:

1
lellz,oy =112 gl -

o Using the equiavlence between L, and Lg in finite dim space P,

1P,y < CIPIL ) -

1_1
o In particular, HPHLq(,) < Cllla r “P”L,,(I) for g > p.
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Piecewise polynomial approximation |

o Dy: set of dyadic cubes | C Q of sidelength 2.

Sk(r): A space of r order Dy-piecewise polynomials.
@ Then,
f € B} oo() & d(f,Sk(r),@ < |f\5’§ym(n)2_k5-

(Finite element method type argument)
o Least square approximation Sif € Sk(r) for the target f from the observation on the grid:
o Suppose we once more decompose each [ into ¢;/N side length grid A for some N > pl/d;
d
o eg., for I =1[0,6) A= {o, 4o 40— %)} .
o Can define a Hilbert space L?(puy) with py = ﬁ Zz,»e/\ Jz;, the empirical probability measure.

P, C LZ([LN) = Q1,...,Qy € P,: Orthonormal system of Lz(,uN)
P/f = le (f, Qj>L2(HN) Qj: Least-square approximation of f|; to P, (classical result from Hilbert

space theory).
o For k < n—r, Sf := Z/e'Dk(Plf)X/-
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o (DNP*25)[Lemma 2.2]: ||f — Sfll, (o < C|f| phetkd(G—5)
2l kFllge) < Clfles @ :

o The proof is generalization of interpolating polynomial proof discussed in the class.
f=S0f + 3 02,(5kf — Sk—1f) = || — Sef|| < Ej>k ||S;f — Sj,lfHLq(m.

Use the L,, Lg-norm equivalence and triangular inequality to write the bound w.r.t. d(f, Sk(r))i,(9)-

Vle,,oo 27k term comes from d(f, Si(N)ep@) < ‘HBE,M W,(f,2*‘<)Lp(m.

kd(l,l)+ 1_1 kd(L—1)
e 2P 4" term comes from ||P|\Lq(,) < Clla P ||PHLP(,) =C2'p 4 HP”LQ(I) for P € P,.

@ The noisy version counterpart will be denoted ~ (e.g., gky).
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Assumptions

o Q=(0,1)9.
ni Ll (0,02) be a sub-Gaussian distribution.
o The model space K = U(B; ().
0<p,7<00, p<g<oo,5>0,5>d/p, qg<p+2%.
o s > d/pis required to make f € K to be continuous (Sobolev embedding).

— S
o g < p+ 2% ensures the minimax rate to be m~ 25+d (primary case); but this can be dropped

(DNP*25)[Remark 8.1].
o p > q case falls down to p = g case.
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(DNP*25)[Theorem 1.3]

s 1 1 s
Rm(K; o) 2 m~ a7~ a)* 4 min {1, (o2m~1)=Ta } .

@ This indicates the information-theoretic lower bound; no algorithm can achieve the faster
rate than this.

o Typical approach: create the ‘worst-case’ fs for each algorithm f4.
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(DNP*25)[Theorem 1.1, 1.3] If Xm = G, := {0,27",...,1— 2—"}d for m = 24, then for any
a€ (0,2 — %) there exists an algorithm A such that

s 1 1 s
(I = Al 2 € (3G 4 to?m )5 )| < Conpl-ct?)

for some constant ¢, C which does not depend on m,o.
Accordingly,

s 1 1 s
Run(K; 0, Xm) <m~ a0 4 min {1, (o2m~1)55a } 4

@ To convert probability bound to expectation bound, there is a canonical formula:
E(X) = [3° P(X > s)ds for X: non-negative random variable.

o Remark: For the opposite direction, one can use Markov inequality (in probability theory).

@ Two theorems together,

s 1 1 s
Rm(K; o) < m~ 4772 4 min {1, (o2m~1)5ta } .
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Proof of lower bound |

o For the lower bound, can assume o2 < m.

o Let e:= (azm_l)ﬁ and n be the smallest integer such that n=° < ¢ (think as an equal).
coex crn%/\/ﬁ.

o For fixed Xp, let y(f) := {f(xi)}izl,...,m' y(f) = {f(x;) +77"}i=1,---,m'

o Want to show: For any algorithm A : R™ — L4(Q) there exists f4 € K s.t.

Ey 4 — AG)L, 2 ¢

—s(2-Liy,
whenever e 2 m d7'p a’T,

o Known fact from OR literature: For any X, there exists f, g such that they coincides on
_sy(i_1
X, ice., y(F) = y(g), but |If —gl|, zm @ p7a.
@ Then,

1
7§+(57

= AV (NIlg + [IAX(F) — Alv())l +[lg — A ()]l -

=0 (. y(f)=y(g))

m

o Implying .
max {EHf AN ENlf - A(y(g))”q} > T A
543D

Meaning when e < m * the optimal recovery rate appears.
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Proof of lower bound Il

@ Typical minimax bound methods: Le Cam, Fano, Assouad.

o Idea: Estimation and choosing the closest one among sufficiently discretized set is almost
similar.

@ Goal: Construct a cpe-separated covering Fy = {fi,...,fy} C K, i.e, ||f, — fqu > cge for
all i,j < N = we choose f4, among f;'s.

o Let 6 € C2([0,1)%) st Bl =1, 18llg; = M < o0.

@ Shift and scale this function to the cubes of side length 1/n Q1,..., Q.4 (n defined in the
above). ¢;i(-) = yn~*¢(n(- — Bottom left corner of Q;)). v will be chosen later to match
quantities.

o Result from combinatorics: there exists S C {il}”d such that |S| > 27" and for all
a#beS |la— bl > cn; cn?-separating.
o Meaning: Many but still well-separated.
o eg., n? =2, then ||(1,1) — (1,0)llg, > 2.
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o Fy = {f = Z,’-’il Kidi | (K1,...,Kpd) € S} with N = |S| > pen? ~ is chosen to make
Fn C K (see Figure 1).

Figure 1: Example of f € Fy.

@ Now, all f; # f; € Fy satisfy
o |lfilloe < cyn™° < cve. = ly(f)ll2 < cv/mre.
o ||fi — GHq > cve (any ¢ < n? will work).

o By setting v small enough,

s . . .
o Known metric entropy €iog, n(K)L, < (log, N)™d > cn™° > ce indicates Fy is a ce-separated
covering of K.

o lly(F)ll,2 < o+/Tog(N/5).
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o We have ce-separated covering Fp. Now, consider
_ ce
Bi=A" ({eetal Ifi—gly < 5}) CR™

Bi means a region where the algorithm A chooses f; among Fy.
o Since Fy is a covering, [[; B = R".
o We will show B; has a small measure.
© There exists i such that Py ,2)(B;) < 1.
o N, IP)/\/(0,02)(Bi) = PN(o,UZ)(Hi B)=1
o Known Lemma: If Py q ;2)(B;) < % and ||ly(f)|| < o+/log(N/5), then Priy(£),02)(Bi) < %

o This means any algorithm A has the corresponding f;; while data is from f;, the algorithm A
is not likely to choose f;. This is our f4.

o Then, By, [1fi — AGUENI = fo, 11 8¢ I = AGUEDI > By, 02 (B S 2 e O
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@ Main idea: construct an explicit algorithm that achieves the rate.
o Construction of the algorithm: Assume X, be the regular grid.
@ If 6° > m, then A(y) = 0 (too noisy regime).
@ Otherwise, partition Q by Dy, a dyadic cube of side length of | € Dy being 2.
© Conduct a least square approximation by P,, r-degree polynomial with r < n — k (defined above).

@ Consider the orthonormal basis expression of Ry := Pjy — Puaent(1)Y = ZJ‘.D:l ¢/ ;(y)Q,;. Compute
C/*,j(}/)-
Q Let G j(y) = Thresholding (¢/";(f)). Construction of A is as follows:
@ Let k* be an integer s.t. 2k*71 < e~ 1/s < Qk*.
@ A\ :=0if k < k* and 2‘“7‘3’(* —sk* otherwise. 3 is chosen to satisfy o =

(Recall: « is tail prob we control).

0 Ty = Yien, (TL1850)Q) xi, and T = Aly) = S5 Ty
2

28—d
B+S

for some 6 € (0, %)

o Remark: s,0“ must be known a priori (to find k* and therefore construct \y).
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Proof of upper bound: Rate analysis |

o One can view Ty = S,f — Sk _4f.
7= ell, =l - s 7 = =iz s o+ oo = 0 iy <

°
I = So—rflly + S5 || Tof = T .
o First term comes directly from approximation by least square:
< 2—("—r)(5—d(%—§)+) < m—(s—d(%—éh)_
@ The second term, as @ ; is an orthonormal system,
P P o P
HT"f_ Tky” <2 et —amIT ) <27 Y0 | Do lai() =@’
9 Jep, \y=1 1eDy \j=1

@ For notational simpliicty, we aggregate vy := (c;j)ieD,,jep- Then, one can show

1/q

p R . 1 Ly A
27N D ey =@l ) < v =By = EZl(Vk)/*(Vk)/lq
1=1

1eDy \j=1

@ In sum, we have

n—r
~ —(s—d(1_-1 P
Hf—f”qgm (s=d(; q)+)+;)||yk—yk||q.
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Proof of upper bound: Rate analysis Il

o Goal: bound 37770 [lvk — k||, with high probability.
@ Using the fact that T,f is piecewise polynomial and the approximation rate of piecewise
polynomial to Besov space, one can get |[vk||; < 2~k (DNP+25)[Lemma 2.3].

@ Then, using the known properties about thresholding on Gaussian noise ,

kp 1-B
i =il 270 x o+ [l

Deterministic Stochastic

Here, 1, is a 0-mean ‘7/2j € (o, C2_("_k)do'2)-variance normal variable thresholded by A\, /2.

@ Sum of determinstic term: interpret as low-signal = error is at most Ax. It is < 2—K"s <e
by the construction of Ay (In fact, Ax is chosen to bound this).

o The part where A and s are interacting, via ||vl|; .
@ Sum of stochastic term: interpret as a high noise level. Bounding this with high probability
can be done with classical thresholding analysis result.

o Remark: Typical Thresholding analysis was on expectation bound, but (DNP*25) did a probability
bound; this induces the analysis resulting in probability bound rather than expectation.
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Summary

o Interpolating the result between optimal recovery and minimax bound.

o Upper bound: by proposing explicit algorithm: Thresholding + least square piecewise polynomial fit.
o Lower bound: Converting the estimation problem to choosing one among sufficiently well-discretized
set.

@ Pros: Explicit algorithm. Simple to implement.

o Cons: Need to know s,c? a priori to determine the optimal threshold.
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Extension

@ Theoretical side: More general function space setting.

@ Algorithmic side: improving algorithms? Or does other existing algorithm acheives the
adaptive tight rate w/o knowledge of o7

o Adaptive to unknown parameters s, o7
o Neural network?
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