Optimal recovery meets minimax estimation

By DeVore, Nowak, Parhi, Petrova, and Siegel.

Jiyoung Park

October 10, 2025

Outline

- 1. Introduction
- 2. Preliminaries
- 3. Main result
- 4. Conclusion

Introduction

Problem setting

- Fundamental problem in Statistics: Regression.
 - Let $\Omega \subset \mathbb{R}^d$: bounded set with sufficient regularity (open, simply connected, Lipschitz boundary $\partial\Omega$).
 - An unknown function $f \in K$, where K is some compact set on $L_q(\Omega)$. K is dubbed model space.
 - Given: Domain data $\mathcal{X} = \{x_i\}_{i=1,\dots,m}$ and corresponding noisy function data

$$y = \{f(x_i) + \eta_i\}_{i=1,...,m}$$
, where $\eta_i \stackrel{i.i.d}{\sim} N(0, \sigma^2)$ is a noise.

 Goal: With the fixed the domain data X, find an algorithm A which finds the 'best' approximator of f ∈ K.

$$A:\mathbb{R}^m \to L_q(\Omega).$$

• The performance criterion is based on the worst-case $L_q(\Omega)$ risk:

$$E_A(K; \sigma, \mathcal{X})_q := \sup_{f \in K} \mathbb{E}_{\eta_i} \|f - A(y)\|_{L_q(\Omega)}.$$

ullet Minimax risk: the optimal worst-case risk over all possible choices of ${\mathcal X}$ and A:

$$\mathcal{R}_m(K; \sigma) := \inf_{A, \mathcal{X}} E_A(K; \sigma, \mathcal{X})_q.$$

Indicates the information theoretical lower bound; one cannot make a better algorithm.

• Optimal recovery: $\mathcal{R}_m(K; 0)$; purely deterministic setting.

- Consider the case $\Omega = [0,1]^d$, $K = B_{\tau}^s(L_p(\Omega))$.
- Known minimax rate (DJ98; GN15):

$$\mathcal{R}_m(K;\sigma)_2 \asymp m^{-\frac{s}{2s+d}}.$$

Known (non-adaptive, i.e., fixed X) optimal recovery rate (NT06; KNS21; BDPS25):

$$\mathcal{R}_m(K;0)_2 \asymp m^{-\frac{s}{d}+(\frac{1}{p}-\frac{1}{2})_+}.$$

- Observe one should have $\mathcal{R}_m(K;\sigma) \to \mathcal{R}_m(K;0)$ as $\sigma \to 0$, but $m^{-\frac{s}{2s+d}} \nrightarrow m^{-\frac{s}{d}+(\frac{1}{p}-\frac{1}{2})+}$.
- Is the theory wrong?

- Consider the case $\Omega = [0,1]^d$, $K = B_{\tau}^s(L_p(\Omega))$.
- Known minimax rate (DJ98; GN15):

$$\mathcal{R}_m(K;\sigma)_2 \asymp m^{-\frac{s}{2s+d}}$$
.

• Known (non-adaptive, i.e., fixed \mathcal{X}) optimal recovery rate (NT06; KNS21; BDPS25):

$$\mathcal{R}_m(K;0)_2 \asymp m^{-\frac{s}{d}+(\frac{1}{p}-\frac{1}{2})_+}.$$

- $\bullet \text{ Observe one should have } \mathcal{R}_m(K;\sigma) \to \mathcal{R}_m(K;0) \text{ as } \sigma \to 0 \text{, but } m^{-\frac{s}{2s+d}} \nrightarrow m^{-\frac{s}{d}+(\frac{1}{p}-\frac{1}{2})_+}.$
- Is the theory wrong?
- ullet A: The effect of σ is hidden in the constant.
- Conclusion of the paper (DNP+25):

$$\mathcal{R}_m(K;\sigma)_q \asymp m^{-\frac{s}{d}+(\frac{1}{p}-\frac{1}{q})_+} + \min\left\{1, (\sigma^2 m^{-1})^{\frac{s}{2s+d}}\right\}.$$

Preliminaries

- Besov space: characterizes a function space with some 'smoothness'.
 - Fix the domain of X by Ω (which will be $(0,1)^d$, a unit hypercube later).
 - For $f \in L^p(\Omega)$, define the 'rth-modulus of smoothness':

$$w_{r,p}(f,t) := \sup_{\|h\| \le t} \left\| \Delta_h^r(f) \right\|_{L^p(\Omega)},$$

where $\Delta_h^r(f)(x) := \sum_{i=0}^r \binom{r}{i} (-1)^{r-j} f(x+jh)$ if $x, x+h \in \Omega$, and 0 otherwise.

• E.g.
$$\Delta_h^1(f)(x) = f(x+h) - f(x)$$
; $\Delta_h^2(f)(x) = f(x+2h) - 2f(x+h) + f(x)$.

• Let r = |s| + 1, and define a Besov semi-norm

$$|f|_{B^s_\tau(L_p(\Omega))} := \left\{ \begin{array}{ll} \left[\int_\Omega \left(\frac{w_{r,p}(f,t)}{t^s} \right)^\tau \, \frac{\mathrm{d}t}{t} \right]^\frac{1}{\tau} & 0 < \tau < \infty, \\ \sup_{t>0} \frac{w_{r,p}(f,t)}{t^s} & \tau = \infty. \end{array} \right.$$

- If f satisfies $\|f\|_{B^s_{\tau}(L_p(\Omega))} := \|f\|_{L_p(\Omega)} + |f|_{B^s_{\tau}(L_p(\Omega))} < \infty$, then f is said to be in a Besov space $B^s_{\tau}(L_p(\Omega))$.
- Remark: $f \in B_{p,\infty}^s \Leftrightarrow w_r(f,2^{-k})_{L_p(\Omega)} \lesssim 2^{-ks}$.

- \mathcal{P}_r : A set of algebraic polynomial of degree r-1.
- Some property of \mathcal{P}_r :
 - for all $P \in \mathcal{P}_r$ $w_r(P, t)_{L_p(\Omega)} = 0$.
 - $\dim(\mathcal{P}_r) = \binom{d+r-1}{d} := \rho$ (by classical combinatorics argument).
- Polynomial approximation rate: For $I \subset \Omega$ a cube with the sidelength ℓ_I , write the error $E_r(g,I)_p := \inf_{P \in \mathcal{P}_r} \|g P\|_{L_p(I)}$. Then, Whitney's theorem (Jackson's theorem type result):

$$c_{r,d,p}E_r(g,I)_p \leq w_r(g,\ell_I)_{L_p(I)} \leq C_{r,d,p}E_r(g,I)_p.$$

- If $Q \in \mathcal{P}_r$ satisfies $\|g Q\|_{L_p(I)} \le c_0 E_r(g, I)$, it is called near approximation.
- If $Q \in \mathcal{P}_r$ is near best $L_p(I)$ approximation, then it is near best approximation on the larger cube J and larger $\bar{p} \geq p$.
 - (∵) Application of quasi-norm version triangular inequality, relationship between L_p and L_{p̄}, Q being polynomial, and Hölder.

Normalized L_p norm:

$$\|g\|_{L_p(I)}^* := |I|^{-\frac{1}{p}} \|g\|_{L_p(I)}.$$

• Using the equiavlence between L_p and L_q in finite dim space \mathcal{P}_r ,

$$\|P\|_{L_{q}(I)}^{*} \leq C \, \|P\|_{L_{p}(I)}^{*} \, .$$

• In particular, $\|P\|_{L_q(I)} \le C \|I\|^{\frac{1}{q}-\frac{1}{p}} \|P\|_{L_p(I)}$ for $q \ge p$.

Piecewise polynomial approximation I

- \mathcal{D}_k : set of dyadic cubes $I \subset \Omega$ of sidelength 2^{-k} .
- $S_k(r)$: A space of r order \mathcal{D}_k -piecewise polynomials.
- Then,

$$f \in \mathcal{B}^{s}_{p,\infty}(\Omega) \Leftrightarrow d(f,\mathcal{S}_{k}(r))_{L_{p}(\Omega)} \leq |f|_{\mathcal{B}^{s}_{p,\infty}(\Omega)} 2^{-ks}.$$

(Finite element method type argument)

- Least square approximation $S_k f \in S_k(r)$ for the target f from the observation on the grid:
 - ullet Suppose we once more decompose each I into ℓ_I/N side length grid Λ for some $N>
 ho^{1/d}$;
 - e.g., for $I = [0, \ell_I)^d$, $\Lambda = \left\{0, \frac{\ell_I}{N}, \dots, \ell_I (1 \frac{1}{N})\right\}^d$.
 - Can define a Hilbert space $L^2(\mu_N)$ with $\mu_N:=rac{1}{N^d}\sum_{z_i\in\Lambda}\delta_{z_i}$, the empirical probability measure.
 - $\mathcal{P}_r \subset L^2(\mu_N) \Rightarrow Q_1, \ldots, Q_\rho \in \mathcal{P}_r$: Orthonormal system of $L^2(\mu_N)$.
 - $P_1f := \sum_{j=1}^{p} \langle f, Q_j \rangle_{L^2(\mu_N)} Q_j$: Least-square approximation of $f|_I$ to \mathcal{P}_r (classical result from Hilbert space theory).
 - For $k \leq n-r$, $S_k f := \sum_{I \in \mathcal{D}_k} (P_I f) \chi_I$.

Piecewise polynomial approximation II

- $\bullet \ \, (\mathsf{DNP}^+25)[\mathsf{Lemma} \ 2.2] \colon \, \|f S_k f\|_{L_q(\Omega)} \leq C \, |f|_{B^s_{p,\infty}(\Omega)} \, 2^{-ks + kd(\frac{1}{p} \frac{1}{q})_+}.$
 - The proof is generalization of interpolating polynomial proof discussed in the class.
 - $f = S_0 f + \sum_{k=1}^{\infty} (S_k f S_{k-1} f) \Rightarrow ||f S_k f|| \le \sum_{j>k} ||S_j f S_{j-1} f||_{L_q(\Omega)}$
 - ullet Use the L_p, L_q -norm equivalence and triangular inequality to write the bound w.r.t. $d(f, \mathcal{S}_k(r))_{L_p(\Omega)}$.
 - $\bullet \ |f|_{B^s_{p,\infty}} \ 2^{-ks} \ \text{term comes from} \ d(f,\mathcal{S}_k(r))_{L_p(\Omega)} \leq |f|_{B^s_{p,\infty}} \ w_r(f,2^{-k})_{L_p(\Omega)}.$
 - $\bullet \ 2^{kd(\frac{1}{p}-\frac{1}{q})_+} \ \text{term comes from} \ \|P\|_{L_q(I)} \leq C \ |I|^{\frac{1}{q}-\frac{1}{p}} \ \|P\|_{L_p(I)} = C 2^{kd(\frac{1}{p}-\frac{1}{q})} \ \|P\|_{L_Q(I)} \ \text{for} \ P \in \mathcal{P}_r.$
- The noisy version counterpart will be denoted $\widetilde{\cdot}$ (e.g., $\widetilde{S}_k y$).

Main result

Assumptions

- $\Omega = (0,1)^d$.
- $\eta_i \stackrel{i.i.d}{\sim} (0, \sigma^2)$ be a sub-Gaussian distribution.
- The model space $K = U(B_{p,\tau}^s(\Omega))$.
- $0 < p, \tau \le \infty$, $p \le q \le \infty$, s > 0, s > d/p, q .
 - s > d/p is required to make $f \in K$ to be continuous (Sobolev embedding).
 - $q ensures the minimax rate to be <math>m^{-\frac{s}{2s+d}}$ (primary case); but this can be dropped (DNP+25)[Remark 8.1].
 - $p \ge q$ case falls down to p = q case.

Theorem

 $(DNP^+25)[Theorem 1.3]$

$$\mathcal{R}_{\textit{m}}(\textit{K};\sigma) \gtrsim \textit{m}^{-\frac{\textit{s}}{\textit{d}} + (\frac{1}{\textit{p}} - \frac{1}{\textit{q}})_{+}} + \min\left\{1, (\sigma^{2} \textit{m}^{-1})^{\frac{\textit{s}}{2\textit{s} + \textit{d}}}\right\}.$$

- This indicates the information-theoretic lower bound; no algorithm can achieve the faster rate than this.
- ullet Typical approach: create the 'worst-case' f_A for each algorithm f_A .

Theorem

(DNP+25)[Theorem 1.1, 1.3] If $\mathcal{X}_m = G_n := \left\{0, 2^{-n}, \dots, 1-2^{-n}\right\}^d$ for $m=2^{nd}$, then for any $\alpha \in (0, 2-\frac{d(q-p)_+}{sp})$ there exists an algorithm A such that

$$\mathbb{P}\left[\|f - A(y)\|_{L_{q}} \ge C\left(m^{-\frac{s}{d} + (\frac{1}{p} - \frac{1}{q})_{+}} + t(\sigma^{2}m^{-1})^{\frac{s}{2s + d}}\right)\right] \le C\exp(-ct^{\alpha})$$

for some constant c, C which does not depend on m, σ . Accordingly.

$$\mathcal{R}_m(K;\sigma,\mathcal{X}_m) \lesssim m^{-\frac{s}{d}+(\frac{1}{p}-\frac{1}{q})_+} + \min\left\{1,(\sigma^2m^{-1})^{\frac{s}{2s+d}}\right\}.$$

- To convert probability bound to expectation bound, there is a canonical formula: $\mathbb{E}(X) = \int_0^\infty P(X>s) ds$ for X: non-negative random variable.
 - Remark: For the opposite direction, one can use Markov inequality (in probability theory).
- Two theorems together,

$$\mathcal{R}_{\textit{m}}(\textit{K};\sigma) \asymp \textit{m}^{-\frac{s}{\textit{d}} + (\frac{1}{\textit{p}} - \frac{1}{\textit{q}})_{+}} + \min\left\{1, (\sigma^{2} \textit{m}^{-1})^{\frac{s}{2s + \textit{d}}}\right\}.$$

Proof of lower bound I

- For the lower bound, can assume $\sigma^2 \leq m$.
- Let $\epsilon:=(\sigma^2m^{-1})^{\frac{s}{2s+d}}$ and n be the smallest integer such that $n^{-s}\leq \epsilon$ (think as an equal). $\therefore \epsilon \asymp \sigma n^{\frac{d}{2}}/\sqrt{m}$.
- For fixed \mathcal{X}_m , let $y(f) := \{f(x_i)\}_{i=1,...,m}$, $\widetilde{y}(f) := \{f(x_i) + \eta_i\}_{i=1,...,m}$.
- ullet Want to show: For any algorithm $A:\mathbb{R}^m o L_q(\Omega)$ there exists $f_A\in K$ s.t.

$$\mathbb{E}_{\eta} \| f_{A} - A(\widetilde{y}(f)) \|_{L_{q}} \gtrsim \epsilon$$

whenever $\epsilon \gtrsim m^{-\frac{s}{d} + (\frac{1}{p} - \frac{1}{q})_+}$.

- Known fact from OR literature: For any \mathcal{X}_m , there exists f,g such that they coincides on \mathcal{X}_m , i.e., y(f)=y(g), but $\|f-g\|_{L_q}\gtrsim m^{-\frac{s}{d}+(\frac{1}{p}-\frac{1}{q})+}$.
- Then,

$$m^{-\frac{s}{d}+(\frac{1}{p}-\frac{1}{q})_+} \lesssim \|f-A(\widetilde{y}(f))\|_q + \underbrace{\|A(\widetilde{y}(f))-A(\widetilde{y}(g))\|}_{=0 \ (:\ y(f)=y(g))} + \|g-A(\widetilde{y}(g))\|.$$

Implying

$$\max\left\{\mathbb{E}\left\|f-A(\widetilde{y}(f))\right\|_{q},\mathbb{E}\left\|f-A(\widetilde{y}(g))\right\|_{q}\right\}\gtrsim m^{-\frac{s}{d}+(\frac{1}{p}-\frac{1}{q})_{+}}.$$

Meaning when $\epsilon \leq m^{-\frac{s}{d}+(\frac{1}{p}-\frac{1}{q})_+}$ the optimal recovery rate appears.

Proof of lower bound II

- Typical minimax bound methods: Le Cam, Fano, Assouad.
- Idea: Estimation and choosing the closest one among sufficiently discretized set is almost similar.
- Goal: Construct a $c_0\epsilon$ -separated covering $\mathcal{F}_N := \{f_1, \dots, f_N\} \subset K$, i.e., $\|f_i f_j\|_q \ge c_0\epsilon$ for all $i, j \le N \Rightarrow$ we choose f_A among f_i 's.
- Let $\phi \in C_c^{\infty}([0,1]^d)$ s.t. $\|\phi\|_{\infty} = 1$, $\|\phi\|_{B^s_{p,T}} := M < \infty$.
- Shift and scale this function to the cubes of side length $1/n\ Q_1,\ldots,Q_{n^d}$ (n defined in the above). $\phi_i(\cdot)=\gamma n^{-s}\phi(n(\cdot-\text{Bottom left corner of }Q_i))$. γ will be chosen later to match quantities.
- Result from combinatorics: there exists $S \subset \{\pm 1\}^{n^d}$ such that $|S| \geq 2^{cn^d}$ and for all $a \neq b \in S \|a b\|_{\ell^1} \geq cn^d$; cn^d -separating.
 - Meaning: Many but still well-separated.
 - \bullet e.g., $n^d=2$, then $\|(1,1)-(1,0)\|_{\ell_1}\geq 2$.

• $\mathcal{F}_N := \left\{ f = \sum_{i=1}^{n^d} \kappa_i \phi_i \mid (\kappa_1, \dots, \kappa_{n^d}) \in S \right\}$ with $N = |S| \ge 2^{cn^d}$. γ is chosen to make $\mathcal{F}_N \subset K$ (see Figure 1).

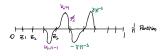


Figure 1: Example of $f \in \mathcal{F}_N$.

- Now, all $f_i \neq f_i \in \mathcal{F}_N$ satisfy
 - $\|f_i\|_{\infty} \le c\gamma n^{-s} \le c\gamma \epsilon$. $\Rightarrow \|y(f_i)\|_{\ell^2} \le c\sqrt{m}\gamma \epsilon$.
 - $||f_i f_j||_a \ge c\gamma\epsilon$ (any $c \le n^d$ will work).
- ullet By setting γ small enough,
 - Known metric entropy $\epsilon_{\log_2 N}(K)_{L_q} \asymp (\log_2 N)^{-\frac{s}{d}} \ge cn^{-s} \ge c\epsilon$ indicates \mathcal{F}_N is a $c\epsilon$ -separated covering of K.
 - $||y(f_i)||_{\ell^2} < \sigma \sqrt{\log(N/5)}$.

• We have $c\epsilon$ -separated covering \mathcal{F}_N . Now, consider

$$B_i := A^{-1}\left(\left\{g \in L_q \mid \left\|f_i - g\right\|_q < \frac{c\epsilon}{2}\right\}\right) \subset \mathbb{R}^m.$$

 B_i means a region where the algorithm A chooses f_i among \mathcal{F}_N .

- Since \mathcal{F}_N is a covering, $\prod_i B_i = \mathbb{R}^m$.
- We will show B_i has a small measure.
- There exists i such that $\mathbb{P}_{N(0,\sigma^2)}(B_i) \leq \frac{1}{N}$.

$$\bullet :: \sum_{i=1}^{N} \mathbb{P}_{N(0,\sigma^2)}(B_i) = \mathbb{P}_{N(0,\sigma^2)}(\coprod_i B_i) = 1.$$

- $\bullet \ \, \text{Known Lemma: If } \mathbb{P}_{N(0,\sigma^2)}(B_i) \leq \tfrac{1}{N} \ \, \text{and} \ \, \|y(f_i)\| < \sigma \sqrt{\log(N/5)}, \ \, \text{then } \mathbb{P}_{N(y(f_i),\sigma^2)}(B_i) < \tfrac{1}{2}.$
- This means any algorithm A has the corresponding f_i ; while data is from f_i , the algorithm A is not likely to choose f_i . This is our f_A .
- Then, $\mathbb{E}_{\eta_i} \|f_i A(\widetilde{y}(f_i))\| = \int_{B_i \coprod B_i^c} \|f_i A(\widetilde{y}(f))\| \ge \mathbb{P}_{N(y(f_i), \sigma^2)}(B_i^c) \frac{c\epsilon}{2} \gtrsim c\epsilon$.

Proof of upper bound: Explicit algorithm

- Main idea: construct an explicit algorithm that achieves the rate.
- ullet Construction of the algorithm: Assume \mathcal{X}_m be the regular grid.
 - ① If $\sigma^2 > m$, then A(y) = 0 (too noisy regime).
 - ② Otherwise, partition Ω by \mathcal{D}_k , a dyadic cube of side length of $I \in \mathcal{D}_k$ being 2^{-k} .
 - **©** Conduct a least square approximation by \mathcal{P}_r , r-degree polynomial with $r \leq n k$ (defined above).
 - ① Consider the orthonormal basis expression of $\widetilde{R}_l y := \widetilde{P}_l y \widetilde{P}_{\mathsf{parent}(l)} y = \sum_{j=1}^{\rho} c_{l,j}^*(y) Q_{l,j}$. Compute $c_{l,j}^*(y)$.
 - **1** Let $\widehat{c}_{l,j}(y) := \mathsf{Thresholding}_{\lambda_k}(c_{l,j}^*(f))$. Construction of λ_k is as follows:
 - Let k^* be an integer s.t. $2^{k^*-1} < \epsilon^{-1/s} < 2^{k^*}$.
 - $\lambda_k := 0$ if $k \le k^*$ and $2^{\beta k \beta k^* sk^*}$ otherwise. β is chosen to satisfy $\alpha = \frac{2\beta d}{\beta + \delta}$ for some $\delta \in (0, \frac{d}{2})$ (Recall: α is tail prob we control).
 - $\widehat{T}_k y = \sum_{I \in \mathcal{D}_k} \left(\sum_{j=1}^{\rho} \widehat{c}_{I,j}(y) Q_{I,j} \right) \chi_I, \text{ and } \widehat{f} = A(y) = \sum_{k=0}^{n-r} \widehat{T}_k y.$
- Remark: s, σ^2 must be known a priori (to find k^* and therefore construct λ_k).

Proof of upper bound: Rate analysis I

- One can view $T_k = S_k f S_{k-1} f$.
- $\|\widehat{f} f\|_{q} = \|f \sum_{k=0}^{n-r} \widehat{T}y\| = \|\sum_{k=0}^{n-r} T_{k}f + S_{n-r}f \sum_{k=0}^{n-r} \widehat{T}_{k}y\| \le \|f S_{n-r}f\|_{q} + \sum_{k=0}^{n-r} \|T_{k}f \widehat{T}_{k}y\|.$
- First term comes directly from approximation by least square: $\lesssim 2^{-(n-r)(s-d(\frac{1}{\rho}-\frac{1}{q})+)} \lesssim m^{-(s-d(\frac{1}{\rho}-\frac{1}{q})+)}.$
- ullet The second term, as $Q_{l,j}$ is an orthonormal system,

$$\left\|T_k f - \widehat{T}_k y\right\|_q^q \lesssim \sum_{I \in \mathcal{D}_k} \left(\sum_{j=1}^{\rho} \left|c_{I,j}(f) - \widehat{c}_{I,j}(y)\right|^q\right) |I| \lesssim 2^{-kd} \sum_{I \in \mathcal{D}_k} \left(\sum_{j=1}^{\rho} \left|c_{I,j}(f) - \widehat{c}_{I,j}(y)\right|^q\right).$$

ullet For notational simplicity, we aggregate $u_k := (c_{l,j})_{l \in \mathcal{D}_k, j \in \rho}$. Then, one can show

$$2^{-kd} \sum_{I \in \mathcal{D}_k} \left(\sum_{j=1}^{\rho} \left| c_{I,j} - \widehat{c}_{I,j} \right| \right) \leq \|\nu_k - \widehat{\nu}_k\|_q^* := \left(\frac{1}{L_k} \sum_{l=1}^{L_k} \left| (\nu_k)_l - (\widehat{\nu}_k)_l \right|^q \right)^{1/q}.$$

In sum, we have

$$\|\widehat{f} - f\|_{q} \lesssim m^{-(s-d(\frac{1}{p} - \frac{1}{q})_{+})} + \sum_{k=0}^{n-r} \|\nu_{k} - \widehat{\nu}_{k}\|_{q}^{*}.$$

Proof of upper bound: Rate analysis II

- Goal: bound $\sum_{k=0}^{n-r} \|\nu_k \widehat{\nu}_k\|_q^*$ with high probability.
- Using the fact that $T_k f$ is piecewise polynomial and the approximation rate of piecewise polynomial to Besov space, one can get $\|\nu_k\|_p^s \lesssim 2^{-ks}$ (DNP+25)[Lemma 2.3].
- Then, using the known properties about thresholding on Gaussian noise,

$$\|\nu_k - \widehat{\nu}_k\|_q^* \lesssim \underbrace{2^{-\frac{ksp}{q}} \lambda_k^{1-\frac{p}{q}}}_{\text{Deterministic}} + \underbrace{\|\eta_{\lambda_k}\|_q^*}_{\text{Stochastic}}.$$

Here, η_{λ_k} is a 0-mean $\sigma_{l,j}^2 \in (0,C2^{-(n-k)d}\sigma^2)$ -variance normal variable thresholded by $\lambda_k/2$.

- Sum of determinstic term: interpret as low-signal \Rightarrow error is at most λ_k . It is $\lesssim 2^{-k^*s} \lesssim \epsilon$ by the construction of λ_k (In fact, λ_k is chosen to bound this).
 - The part where λ_k and s are interacting, via $\|\nu_k\|_p^*$.
- Sum of stochastic term: interpret as a high noise level. Bounding this with high probability can be done with classical thresholding analysis result.
 - Remark: Typical Thresholding analysis was on expectation bound, but (DNP⁺25) did a probability bound; this induces the analysis resulting in probability bound rather than expectation.

Conclusion

Summary

- Interpolating the result between optimal recovery and minimax bound.
 - ullet Upper bound: by proposing explicit algorithm: Thresholding + least square piecewise polynomial fit.
 - Lower bound: Converting the estimation problem to choosing one among sufficiently well-discretized set.
- Pros: Explicit algorithm. Simple to implement.
- Cons: Need to know s, σ^2 a priori to determine the optimal threshold.

Extension

- Theoretical side: More general function space setting.
- Algorithmic side: improving algorithms? Or does other existing algorithm acheives the adaptive tight rate w/o knowledge of σ ?
 - Adaptive to unknown parameters s, σ ?
 - Neural network?

Thank You For Your Attention!

References I

- [BDPS25] Andrea Bonito, Ronald DeVore, Guergana Petrova, and Jonathan W Siegel, Convergence and error control of consistent pinns for elliptic pdes, IMA Journal of Numerical Analysis (2025), draf008.
 - [DJ98] David L. Donoho and Iain M. Johnstone, Minimax estimation via wavelet shrinkage, The Annals of Statistics 26 (1998), no. 3, 879 – 921.
- [DNP+25] Ronald DeVore, Robert D. Nowak, Rahul Parhi, Guergana Petrova, and Jonathan W. Siegel, Optimal recovery meets minimax estimation, 2025.
 - [GN15] Evarist Giné and Richard Nickl, Mathematical foundations of infinite-dimensional statistical models, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2015.
 - [KNS21] David Krieg, Erich Novak, and Mathias Sonnleitner, Recovery of sobolev functions restricted to iid sampling, Math. Comput. 91 (2021), 2715–2738.
 - [NT06] E Novak and H Triebel, Function spaces in lipschitz domains and optimal rates of convergence for sampling, Constr Approx 23 (2006).