Reproducing kernel Hilbert Space and C*-Module

Jiyoung Park¹

¹Department of Statistics Texas A&M University

October 10, 2025

Park (TAMU) RKHM 1 / 26

Table of Contents

- RKHS
 - Properties
 - Applications
- 2 RKHM
 - Properties
 - Applications
- Conclusion

Park (TAMU)

Reproducing Kernel Hilbert Space (RKHS)

Park (TAMU) RKHM 3 / 26

- Reproducing Kernel Hilbert Space (RKHS) over \mathbb{R} (generally \mathbb{F}).
 - \mathcal{X} : An arbitrary set (often called a data space).
 - $\mathcal{H} \subseteq \mathbb{R}^{\mathcal{X}} = \{f : \mathcal{X} \to \mathbb{R}\}$: A Hilbert space with a pointwise addition and multiplication.

Definition (RKHS)

- **①** A positive definite kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a reproducing kernel of \mathcal{H} if for all $x \in \mathcal{X}$ $k(\cdot, x) \in \mathcal{H}$, and for all $f \in \mathcal{H}$ $f(x) = \langle f, k(\cdot, x) \rangle_{\mathcal{H}}$.
- ② If $\mathcal H$ has a reproducing kernel, it is called a 'reproducing kernel Hilbert space'.
- $\phi(x) := k(\cdot, x) \in \mathcal{H}$ is called a 'feature map'.

Park (TAMU) RKHM 4 / 26

- We can also construct RKHS from the certain kernel.
 - Given k, a positive definite kernel, let $\phi(x) := k(\cdot, x) \in \mathbb{R}^{\mathcal{X}}$. Then, consider the following subset of $\mathbb{R}^{\mathcal{X}}$:

$$\mathcal{H}_k^0 := \left\{ \sum_{i=1}^n a_i \phi(x_i) \middle| n \in \mathbb{N}, \ a_i \in \mathbb{R}, \ x_i \in \mathcal{X}
ight\}$$

with the inner product (well-defined due to positive definiteness of k)

$$\left\langle \sum_{i=1}^n a_i \phi(x_i), \sum_{j=1}^m b_j \phi(y_j) \right\rangle := \sum_i \sum_j a_i b_j k(x_i, y_j).$$

Then, \mathcal{H}_k , the completion of \mathcal{H}_k^0 by the given inner product structure, is RKHS with respect to the kernel k.

5 / 26

Park (TAMU) RKHM

Topology of RKHS I

Theorem

The followings are equivalent:

- H is a RKHS.
- ② For all $x \in \mathcal{X}$, a linear functional $L_x : \mathcal{H} \to \mathbb{R}$ defined by $L_x(f) = f(x)$ is continuous.
 - Meaning: Norm of RKHS stands for the pointwise convergence.

6 / 26

Park (TAMU) RKHM

Topology of RKHS II

- Sketch of the proof:
 - \Rightarrow : For $f_n \stackrel{\mathcal{H}}{\to} f$, observe the following:

$$L_{x}(f) = f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}} = \langle \lim f_{n}, k(x, \cdot) \rangle_{\mathcal{H}}$$
$$= \lim \langle f_{n}, k(x, \cdot) \rangle_{\mathcal{H}} = \lim f_{n}(x) = \lim L_{x}(f_{n}).$$

• \Leftarrow : Consider the Riesz Representation (Hilbert space version) of L_x , denoted $h_x \in \mathcal{H}$. Define a kernel by $k(x,y) := h_x(y)$, and it is easy to check this kernel satisfies the desired properties.

Park (TAMU) RKHM 7 / 26

RKHS ⇔ kernel I

• An 1-1 correspondence between a RKHS and a kernel.

Theorem

- **①** For every \mathcal{H} a RKHS, its reproducing kernel k is unique.
- ② For every positive definite kernel k, \mathcal{H}_k is the unique RKHS with respect to the kernel k.

Park (TAMU) RKHM 8 / 26

- Sketch of the proof
 - **①** Let k_1 , k_2 be a kernels w.r.t. \mathcal{H} . Then, let $\phi_i(x) = k_i(\cdot, x) \in \mathcal{H}$. We observe the following:

$$\|\phi_{1}(x) - \phi_{2}(x)\|_{\mathcal{H}}^{2} = \langle \phi_{1}(x) - \phi_{2}(x), \phi_{1}(x) - \phi_{2}(x) \rangle$$

= $\langle \phi_{1}(X) - \phi_{2}(x), \phi_{1}(x) \rangle - \langle \phi_{1}(x) - \phi_{2}(x), \phi_{2}(x) \rangle$
= 0

by reproducing properties. This implies $k_1(x,y) = k_2(x,y)$ for all $x,y \in \mathcal{X}$.

9 / 26

Park (TAMU) RKHM

- ② Let $\mathcal{H}_1, \mathcal{H}_2$ be RKHSs w.r.t. a kernel k.
 - Then, \mathcal{H}_k^0 is a linear dense subspace of both \mathcal{H}_1 and \mathcal{H}_2 .
 - Therefore, for $f \in \mathcal{H}_i$, we can pick a Cauchy sequence $f_n \in \mathcal{H}_k^0$ converging to $f \in \mathcal{H}_i$ and $g \in \mathcal{H}_{-i}$.
 - Observe $f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \langle f_n, k(\cdot, x) \rangle_{\mathcal{H}^0_k} = g(x)$ for all $x \in \mathcal{X}$.
 - Therefore $\mathcal{H}_i \subseteq \mathcal{H}_{-i}$, and the vice versa.

Park (TAMU) RKHM 10 / 26

- Mercer Theorem: When \mathcal{X} is compact, RKHS has a nice formulation.
 - Consider the case \mathcal{X} is a compact Hausdorff. We fix k a kernel.
 - Consider a linear operator $T_k: L^2(\mathcal{X}; \mu) \to L^2(\mathcal{X}; \mu)$ defined by

$$T_k(f)(\cdot) = \int_{\mathcal{X}} k(\cdot, x) f(x) d\mu(x)$$

(Hilbert-Schmidt integral operator).

Park (TAMU) RKHM 11 / 26

Theorem (Mercer)

There exists an orthonormal basis $\{e_i\} \subset L^2(\mathcal{X}; \mu)$ being eigenfunctions of T_k and $\lambda_i \geq 0$ being eigenvalues. Moreover,

$$k(x,y) = \sum_{i=0}^{\infty} \lambda_i e_i(x) e_i(y)$$

and this series converges in $L^2(\mathcal{X}; \mu)$.

• Takeaway: If \mathcal{X} is compact, \mathcal{H}_k is the eigenspace of T_k . *i.e.* $\{\phi_i = \sqrt{\lambda_i} e_i\}_i$ forms an orthonormal basis of \mathcal{H}_k .

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ りへぐ

Park (TAMU) RKHM 12 / 26

- Sketch of the proof.
 - The key is to show T_k is a self-adjoint compact operator, and then apply Spectral Theorem.
 - Self-adjointness comes from the positive definiteness of the kernel k.
 - Compactness of T_k comes from using Arzela-Ascoli on the image of T_k on the unit ball of $L^2(\mathcal{X})$ (Arzela-Ascoli part is where we use the compactness of \mathcal{X}).
 - Once obtain the compactness, we have Spectral Theorem for T_k , and therefore $\lambda_i e_i(x) = \int k(x, y) e_i(y) dy = \langle k(x, \cdot), e_i \rangle$ and

$$k(x,\cdot) = \sum_{i} \langle e_i, k(x,\cdot) \rangle e_i(\cdot) = \sum_{i} \lambda_i e_i(x) e_i(\cdot).$$

Plugging-in $\cdot = y$ yields the result.

• Convergence of the sum is guaranteed by the eigendecomposition.

RKHM

- One of applications of RKHS theory is to the probability (or general measure) theory.
 - Fix a probability measure \mathbb{P} in \mathcal{X} .
 - Fix a kernel k.
 - ullet The, the following operation μ is called a 'kernel mean embedding'.

$$\mu_k(\mathbb{P}) = \mathbb{E}_{\mathbb{P}}(\phi(x)) = \int_{\mathcal{X}} k(\cdot, x) d\mathbb{P}(x) \in \mathcal{H}_k$$

- This map is well-defined if $\mathbb{E}_{\mathbb{P}}\sqrt{k(x,x)}<\infty$ (: Hölder inequality).
- $\langle \mu_k(\mathbb{P}), f \rangle = \mathbb{E}_{\mathbb{P}}(f(x))$, *i.e.* $\mu_k(\mathbb{P})$ is the Riesz representation (measure version) of \mathbb{P} .
- Caution: Depending on k, $\mu_k(\cdot)$ may or may not be injective.
- Takeaway: Instead of dealing with measures (often a Banach space or metric space), we can deal with RKHS \mathcal{H}_k , which is easier.

Park (TAMU) RKHM 14 / 26

Reproducing Kernel Hilbert C*-Module (RKHM)

 Park (TAMU)
 15 / 26

- Motivating example: Gaussian process
 - A stochastic process $\{X_i\}_{i\in\mathcal{I}}\subset X(\mathbb{R})$ is called a Gaussian process if for any $\mathcal{I}_d\subset\mathcal{I},\ \{X_i\}_{\mathcal{I}_d}$ is a d-dimensional multivariate Gaussian distribution.
 - A zero-mean Gaussian process is fully determined if a covariance kernel $k(X_i, X_j) = Cov(X_i, X_j)$ is determined (\approx A Gaussian distribution is fully determined with a mean and variance).

Park (TAMU) RKHM 16 / 26

RKHM II

- What if $\{X_i\}_{i\in\mathcal{I}}\subset X(\mathbb{R}^d)$, a multivariate Gaussian process?
- Analogous framework would be $k(X_i, X_i)$ being a covariance matrix.
- k is no longer a \mathbb{R} -valued positive definite kernel, but still a symmetric positive definite operator.
- Can we extend the concept of RKHS for the case when *k* is an operator-valued kernel?
- RKHM is a fairly new concept to generalize RKHS to this kind of kernels ([Heo08], [HII+21]).

Park (TAMU) RKHM 17 / 26

- Reproducing Kernel Hilbert C*-Module (RKHM)
 - A: A C^* -algebra (not necessarily unital or commutative).

Definition (Hilbert C*-Module)

- **1** \mathcal{M} is called a C^* -Module if $(\mathcal{M},+)$ is an Abelien group and (right) \mathcal{A} -Module structure.
- ② A map $\langle \cdot, \cdot \rangle_{\mathcal{M}} : \mathcal{M} \times \mathcal{M} \to \mathcal{A}$ is called \mathcal{A} -valued inner product if it satisfies the properties of inner product (substituting the positive definiteness condition by positiveness in \mathcal{A}).
- **3** A norm in \mathcal{M} is defined by $\|u\|_{\mathcal{M}} := \|\langle u, u \rangle_{\mathcal{M}}^{1/2}\|_{\mathcal{A}}$.
- **4** If $(\mathcal{M}, \langle \cdot, \cdot \rangle_{\mathcal{M}})$ is complete w.r.t. $\| \cdot \|_{\mathcal{M}}$, then \mathcal{M} is called a Hilbert C^* -Module.

4 D > 4 A > 4 B > 4 B > B 900

- RKHM can be constructed as the same way we constructed RKHS from a kernel.
 - A kernel $k: \mathcal{X} \times \mathcal{X} \to \mathcal{A}$ is called a \mathcal{A} -valued positive definite kernel if $k(x,y) = k(y,x)^*$ and $\sum_{i,j}^n a_i^* k(x_i,x_j) a_j \ge_{\mathcal{A}} 0$ for all $n \in \mathbb{N}$, $a_{i,j} \in \mathcal{A}$ and $x_{i,j} \in \mathcal{X}$.

19 / 26

Park (TAMU) RKHM

Definition (RKHM)

Let $\phi(x) := k(\cdot, x) : \mathcal{X} \to \mathcal{A}^{\mathcal{X}}$ be a feature map. Consider the following subset of $\mathcal{A}^{\mathcal{X}}$:

$$\mathcal{M}_k^0 := \left\{ \sum_{i=1}^n \phi(x_i) a_i \middle| n \in \mathbb{N}, a_i \in \mathcal{A}, x_i \in \mathcal{X} \right\}$$

equipped with the A-valued inner product

$$\left\langle \sum_{i=1}^n \phi(x_i) a_i, \sum_{j=1}^m \phi(y_j) b_j \right\rangle_{\mathcal{M}_{\nu}^0} := \sum_i \sum_j a_i^* k(x_i, y_j) b_j.$$

Then, the completion of \mathcal{M}_k^0 w.r.t. a norm $\|\cdot\|_{\mathcal{M}_k^0}$ is called a Reproducing Kernel Hilbert C*-Module (RKHM).

> Park (TAMU) **RKHM** 20 / 26

Properties of RKHM I

- By construction, again kernel has a reproducing property, *i.e.* $\langle f, k(\cdot, x) \rangle_{\mathcal{M}_k} = f(x) \in \mathcal{A}$.
- Also, 1-1 correspondence between a kernel and RKHM also holds.
 The proof are exactly same with the 1-1 correspondence of RKHS.

 Park (TAMU)
 RKHM
 21 / 26

Properties of RKHM II

- However. other properties of RKHS are not generalized well for RKHM with \mathcal{A} being a general C^* -algebra.
 - e.g. Orthogonal projection Lemma, Riesz representation theorem.
- If we restrict \mathcal{A} being a Von-Neumann algebra, Riesz representation theorem and Orthogonal projection Lemma are satisfied (this is true for general W^* -modules).
 - I tried to find a proof for this but could not...
- ullet Therefore, we focus on the case when ${\mathcal A}$ is a Von-Neumann algebra. So precisely, we are now analyzing Reproducing Kernel Hilbert W^* -Module.

Park (TAMU) RKHM 22 / 26

• Here, we consider a set $\mathcal{D}(\mathcal{X}, \mathcal{A})$: a set of all \mathcal{A} -values finite Borel measures. Then, for all $\mathbb{P} \in \mathcal{D}(\mathcal{X}, \mathcal{A})$, Kernel mean embedding of \mathbb{P} by \mathcal{M}_k is

$$\mu_k(\mathbb{P}) := \mathbb{E}_{\mathbb{P}}(\phi(x)) = \int_{\mathcal{X}} k(\cdot, x) d\mathbb{P}(x) \in \mathcal{M}_k.$$

• The well-definedness is non-trivial in this case, unlike in RKHS.

Theorem (Well-definedness)

If
$$\int_{x\in\mathcal{X}} \|k(\cdot,x)\|_{\mathcal{M}_k} d|\mathbb{P}|(x) < \infty$$
, then for all $f \in \mathcal{M}_k$,

$$\langle \mu(\mathbb{P}), f \rangle_{\mathcal{M}_k} = \int_{\mathbf{x} \in \mathcal{X}} d\mathbb{P}(\mathbf{x})^* f(\mathbf{x})$$

Park (TAMU) RKHM 23 / 26

- Sketch of the proof:
 - ① Define $L_{\mathbb{P}}: \mathcal{M}_k \to \mathcal{A}$ by $L_{\mathbb{P}}(f) = \int_{x \in \mathcal{X}} d\mathbb{P}(x)^* f(x)$.
 - ② Observe $L_{\mathbb{P}}$ is bounded. *i.e.*

$$||L_{\mathbb{P}}f||_{\mathcal{M}_{k}} \leq \int_{x \in \mathcal{X}} ||f(x)||_{\mathcal{A}}d|\mathbb{P}|(x) = \int_{x \in \mathcal{X}} \langle f, k(\cdot, x) \rangle_{\mathcal{A}}d|\mathbb{P}|(x)$$

$$\leq ||f||_{\mathcal{M}_{k}} \underbrace{\int_{x \in \mathcal{X}} ||k(\cdot, x)||_{\mathcal{M}_{k}}d|\mathbb{P}|(x)}_{<\infty \text{ by the condition}}.$$

③ Apply Riesz representation theorem for Hilbert W^* -Module: There exists an $\mu(\mathbb{P}) \in \mathcal{M}_k$ such that $L_{\mathbb{P}}f = \langle f, \mu(\mathbb{P}) \rangle_{\mathcal{M}_k}$, which completes the proof.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽٩

24 / 26

Park (TAMU) RKHM

Concluding remarks

- Reproducing Kernel property is useful in many sides (e.g. Quantum mechanics, Machine Learning, ...).
- RKHS is the most basic one, and there are many extensions (e.g. Reproducing Kernel Banach space, ...). Here we focused on RKHM.

References I

- Jaeseong Heo, Reproducing kernel hilbert c-modules and kernels associated with cocycles, Journal of Mathematical Physics **49** (2008), no. 10.
- Yuka Hashimoto, Isao Ishikawa, Masahiro Ikeda, Fuyuta Komura, Takeshi Katsura, and Yoshinobu Kawahara, *Reproducing kernel hilbert c*-module and kernel mean embeddings*, 2021.

Park (TAMU) RKHM 26 / 26