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RKHS I

Reproducing Kernel Hilbert Space (RKHS) over R (generally F).
X : An arbitrary set (often called a data space).
H ⊆ RX = {f : X → R}: A Hilbert space with a pointwise addition
and multiplication.

Definition (RKHS)

1 A positive definite kernel k : X ×X → R is called a reproducing kernel of H
if for all x ∈ X k(·, x) ∈ H, and for all f ∈ H f (x) = ⟨f , k(·, x)⟩H.

2 If H has a reproducing kernel, it is called a ‘reproducing kernel Hilbert
space’.

3 ϕ(x) := k(·, x) ∈ H is called a ‘feature map’.
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RKHS II

We can also construct RKHS from the certain kernel.

Given k, a positive definite kernel, let ϕ(x) := k(·, x) ∈ RX . Then,
consider the following subset of RX :

H0
k :=

{
n∑

i=1

aiϕ(xi )

∣∣∣∣n ∈ N, ai ∈ R, xi ∈ X

}

with the inner product (well-defined due to positive definiteness of k)〈
n∑

i=1

aiϕ(xi ),
m∑
j=1

bjϕ(yj)

〉
:=

∑
i

∑
j

aibjk(xi , yj).

Then, Hk , the completion of H0
k by the given inner product structure,

is RKHS with respect to the kernel k .
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Topology of RKHS I

Theorem

The followings are equivalent:

1 H is a RKHS.

2 For all x ∈ X , a linear functional Lx : H → R defined by
Lx(f ) = f (x) is continuous.

Meaning: Norm of RKHS stands for the pointwise convergence.
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Topology of RKHS II

Sketch of the proof:

⇒: For fn
H→ f , observe the following:

Lx(f ) = f (x) = ⟨f , k(x , ·)⟩H = ⟨lim fn, k(x , ·)⟩H
= lim⟨fn, k(x , ·)⟩H = lim fn(x) = lim Lx(fn).

⇐: Consider the Riesz Representation (Hilbert space version) of Lx ,
denoted hx ∈ H. Define a kernel by k(x , y) := hx(y), and it is easy to
check this kernel satisfies the desired properties.
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RKHS ⇔ kernel I

An 1-1 correspondence between a RKHS and a kernel.

Theorem
1 For every H a RKHS, its reproducing kernel k is unique.

2 For every positive definite kernel k, Hk is the unique RKHS with respect to
the kernel k.

Park (TAMU) RKHM 8 / 26



RKHS ⇔ kernel II

Sketch of the proof
1 Let k1, k2 be a kernels w.r.t. H. Then, let ϕi (x) = ki (·, x) ∈ H. We

observe the following:

∥ϕ1(x)− ϕ2(x)∥2H = ⟨ϕ1(x)− ϕ2(x), ϕ1(x)− ϕ2(x)⟩
= ⟨ϕ1(X )− ϕ2(x), ϕ1(x)⟩ − ⟨ϕ1(x)− ϕ2(x), ϕ2(x)⟩
= 0

by reproducing properties. This implies k1(x , y) = k2(x , y) for all
x , y ∈ X .
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RKHS ⇔ kernel III

2 Let H1,H2 be RKHSs w.r.t. a kernel k .

Then, H0
k is a linear dense subspace of both H1 and H2.

Therefore, for f ∈ Hi , we can pick a Cauchy sequence fn ∈ H0
k

converging to f ∈ Hi and g ∈ H−i .

Observe f (x) = lim fn(x) = lim⟨fn, k(·, x)⟩H0
k
= g(x) for all x ∈ X .

Therefore Hi ⊆ H−i , and the vice versa.
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Mercer’s Theorem I

Mercer Theorem: When X is compact, RKHS has a nice formulation.

Consider the case X is a compact Hausdorff. We fix k a kernel.

Consider a linear operator Tk : L2(X ;µ) → L2(X ;µ) defined by

Tk(f )(·) =
∫
X
k(·, x)f (x)dµ(x)

(Hilbert–Schmidt integral operator).
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Mercer’s Theorem II

Theorem (Mercer)

There exists an orthonormal basis {ei} ⊂ L2(X ;µ) being eigenfunctions of
Tk and λi ≥ 0 being eigenvalues. Moreover,

k(x , y) =
∞∑
i=0

λiei (x)ei (y)

and this series converges in L2(X ;µ).

Takeaway: If X is compact, Hk is the eigenspace of Tk . i.e.
{ϕi =

√
λiei}i forms an orthonormal basis of Hk .
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Mercer’s Theorem III

Sketch of the proof.

The key is to show Tk is a self-adjoint compact operator, and then
apply Spectral Theorem.
Self-adjointness comes from the positive definiteness of the kernel k.
Compactness of Tk comes from using Arzela-Ascoli on the image of Tk

on the unit ball of L2(X ) (Arzela-Ascoli part is where we use the
compactness of X ).
Once obtain the compactness, we have Spectral Theorem for Tk , and
therefore λiei (x) =

∫
k(x , y)ei (y)dy = ⟨k(x , ·), ei ⟩ and

k(x , ·) =
∑
i

⟨ei , k(x , ·)⟩ei (·) =
∑
i

λiei (x)ei (·).

Plugging-in · = y yields the result.
Convergence of the sum is guaranteed by the eigendecomposition.
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Kernel Mean Embedding I

One of applications of RKHS theory is to the probability (or general
measure) theory.

Fix a probability measure P in X .
Fix a kernel k .
The, the following operation µ is called a ‘kernel mean embedding’.

µk(P) = EP(ϕ(x)) =

∫
X
k(·, x)dP(x) ∈ Hk

This map is well-defined if EP
√
k(x , x) < ∞ (∵ Hölder inequality).

⟨µk(P), f ⟩ = EP(f (x)), i.e. µk(P) is the Riesz representation (measure
version) of P.
Caution: Depending on k , µk(·) may or may not be injective.

Takeaway: Instead of dealing with measures (often a Banach space or
metric space), we can deal with RKHS Hk , which is easier.
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Reproducing Kernel Hilbert C ∗-Module
(RKHM)
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RKHM I

Motivating example: Gaussian process

A stochastic process {Xi}i∈I ⊂ X (R) is called a Gaussian process if for
any Id ⊂ I, {Xi}Id

is a d-dimensional multivariate Gaussian
distribution.

A zero-mean Gaussian process is fully determined if a covariance kernel
k(Xi ,Xj) = Cov(Xi ,Xj) is determined (≈ A Gaussian distribution is
fully determined with a mean and variance).
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RKHM II

What if {Xi}i∈I ⊂ X (Rd), a multivariate Gaussian process?

Analogous framework would be k(Xi ,Xj) being a covariance matrix.

k is no longer a R-valued positive definite kernel, but still a symmetric
positive definite operator.

Can we extend the concept of RKHS for the case when k is an
operator-valued kernel?

RKHM is a fairly new concept to generalize RKHS to this kind of
kernels ([Heo08], [HII+21]).
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RKHM III

Reproducing Kernel Hilbert C ∗-Module (RKHM)

A: A C∗-algebra (not necessarily unital or commutative).

Definition (Hilbert C ∗-Module)

1 M is called a C∗-Module if (M,+) is an Abelien group and (right)
A-Module structure.

2 A map ⟨·, ·⟩M : M×M → A is called A-valued inner product if it satisfies
the properties of inner product (substituting the positive definiteness
condition by positiveness in A).

3 A norm in M is defined by ∥u∥M := ∥⟨u, u⟩1/2M ∥A.
4 If (M, ⟨·, ·⟩M) is complete w.r.t. ∥ · ∥M, then M is called a Hilbert

C∗-Module.
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RKHM IV

RKHM can be constructed as the same way we constructed RKHS
from a kernel.

A kernel k : X × X → A is called a A-valued positive definite kernel if
k(x , y) = k(y , x)∗ and

∑n
i,j a

∗
i k(xi , xj)aj ≥A 0 for all n ∈ N, ai,j ∈ A

and xi,j ∈ X .
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RKHM V

Definition (RKHM)

Let ϕ(x) := k(·, x) : X → AX be a feature map. Consider the following
subset of AX :

M0
k :=

{
n∑

i=1

ϕ(xi )ai

∣∣∣∣n ∈ N, ai ∈ A, xi ∈ X

}

equipped with the A-valued inner product〈
n∑

i=1

ϕ(xi )ai ,
m∑
j=1

ϕ(yj)bj

〉
M0

k

:=
∑
i

∑
j

a∗i k(xi , yj)bj .

Then, the completion of M0
k w.r.t. a norm ∥ · ∥M0

k
is called a Reproducing

Kernel Hilbert C ∗-Module (RKHM).
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Properties of RKHM I

By construction, again kernel has a reproducing property, i.e.
⟨f , k(·, x)⟩Mk

= f (x) ∈ A.

Also, 1-1 correspondence between a kernel and RKHM also holds.
The proof are exactly same with the 1-1 correspondence of RKHS.
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Properties of RKHM II

However. other properties of RKHS are not generalized well for
RKHM with A being a general C ∗-algebra.

e.g. Orthogonal projection Lemma, Riesz representation theorem.

If we restrict A being a Von-Neumann algebra, Riesz representation
theorem and Orthogonal projection Lemma are satisfied (this is true
for general W ∗-modules).

I tried to find a proof for this but could not...

Therefore, we focus on the case when A is a Von-Neumann algebra.
So precisely, we are now analyzing Reproducing Kernel Hilbert
W ∗-Module.
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Kernel Mean Embedding I

Here, we consider a set D(X ,A): a set of all A-values finite Borel
measures. Then, for all P ∈ D(X ,A), Kernel mean embedding of P
by Mk is

µk(P) := EP(ϕ(x)) =

∫
X
k(·, x)dP(x) ∈ Mk .

The well-definedness is non-trivial in this case, unlike in RKHS.

Theorem (Well-definedness)

If
∫
x∈X ∥k(·, x)∥Mk

d |P|(x) < ∞, then for all f ∈ Mk ,

⟨µ(P), f ⟩Mk
=

∫
x∈X

dP(x)∗f (x)
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Kernel Mean Embedding II

Sketch of the proof:
1 Define LP : Mk → A by LP(f ) =

∫
x∈X dP(x)∗f (x).

2 Observe LP is bounded. i.e.

∥LPf ∥Mk
≤

∫
x∈X

∥f (x)∥Ad |P|(x) =
∫
x∈X

⟨f , k(·, x)⟩Ad |P|(x)

≤ ∥f ∥Mk

∫
x∈X

∥k(·, x)∥Mk
d |P|(x)︸ ︷︷ ︸

<∞ by the condition

.

3 Apply Riesz representation theorem for Hilbert W ∗-Module: There
exists an µ(P) ∈ Mk such that LPf = ⟨f , µ(P)⟩Mk

, which completes
the proof.
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Concluding remarks

Reproducing Kernel property is useful in many sides (e.g. Quantum
mechanics, Machine Learning, . . . ).

RKHS is the most basic one, and there are many extensions (e.g.
Reproducing Kernel Banach space, . . . ). Here we focused on RKHM.

Park (TAMU) RKHM 25 / 26



References I

Jaeseong Heo, Reproducing kernel hilbert c-modules and kernels
associated with cocycles, Journal of Mathematical Physics 49 (2008),
no. 10.

Yuka Hashimoto, Isao Ishikawa, Masahiro Ikeda, Fuyuta Komura,
Takeshi Katsura, and Yoshinobu Kawahara, Reproducing kernel hilbert
c*-module and kernel mean embeddings, 2021.

Park (TAMU) RKHM 26 / 26


	RKHS
	Properties
	Applications

	RKHM
	Properties
	Applications

	Conclusion

