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@ Reproducing Kernel Hilbert Space (RKHS) over R (generally F).
o X: An arbitrary set (often called a data space).

o HCRY ={f:X — R}: A Hilbert space with a pointwise addition
and multiplication.

Definition (RKHS)

Q A positive definite kernel k : X x X — R is called a reproducing kernel of H
if for all x € X k(-,x) € H, and for all f € H f(x) = (f, k(-,x))n

@ IfH has a reproducing kernel, it is called a ‘reproducing kernel Hilbert
space’.

Q o&(x) = k(-,x) € H is called a ‘feature map’.
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@ We can also construct RKHS from the certain kernel.

o Given k, a positive definite kernel, let ¢(x) := k(-,x) € R*. Then,
consider the following subset of R¥:

HY = {Z ai¢(xi)

i=1

neN, a,-eR,x,-eX}

with the inner product (well-defined due to positive definiteness of k)

<Z aid(x): ) bj¢)(Yj)> =)D aibk(xi, ).
=1 j

i=1 i

Then, Hy, the completion of H? by the given inner product structure,
is RKHS with respect to the kernel k.
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The followings are equivalent:
Q H is a RKHS.

@ For all x € X, a linear functional L, : H — R defined by
Ly (f) = f(x) is continuous.

@ Meaning: Norm of RKHS stands for the pointwise convergence.
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@ Sketch of the proof:

e = For f, Lt f, observe the following:

Le(f) = £(x) = (£, k(x, )2 = (lim fo, k(x, )2
= lim({fy, k(x, )} = lim f(x) = lim L(£,).

o «: Consider the Riesz Representation (Hilbert space version) of Ly,

denoted hy, € H. Define a kernel by k(x,y) := hi(y), and it is easy to
check this kernel satisfies the desired properties.
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@ An 1-1 correspondence between a RKHS and a kernel.

© For every H a RKHS, its reproducing kernel k is unique.

@ For every positive definite kernel k, Hy is the unique RKHS with respect to
the kernel k.
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@ Sketch of the proof

Q Let ki, ko be a kernels w.r.t. H. Then, let ¢;(x) = ki(-,x) € H. We
observe the following:

[61(x) = 2(x)[I3; = (1(x) — p2(x), P1(x) — P2(x))
= (¢1(X) = ¢a(x), d1(x)) — (B1(x) — ¢2(x), P2(x))
—0

by reproducing properties. This implies ki(x,y) = ka(x, y) for all
x,y € X.
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Q Let Hy,H, be RKHSs w.r.t. a kernel k.

e Then, ’H(k’ is a linear dense subspace of both H; and Ho.

o Therefore, for f € H;, we can pick a Cauchy sequence f, € H$
converging to f € H; and g € H_;.

@ Observe f(x) = lim fo(x) = lim(f,, k(-,x))Hg = g(x) for all x € X.

@ Therefore H; C H_;, and the vice versa.
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@ Mercer Theorem: When X is compact, RKHS has a nice formulation.

o Consider the case X is a compact Hausdorff. We fix k a kernel.
o Consider a linear operator Ty : L?(X; 1) — L2(X; i) defined by

T (F)() = /X k(- X)F(x)du(x)

(Hilbert-Schmidt integral operator).
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Theorem (Mercer)

There exists an orthonormal basis {e;} C L?(X; i) being eigenfunctions of
Ty and A\; > 0 being eigenvalues. Moreover,

k(x,y) = Z Aiei(x)ei(y)
i=0

and this series converges in L>(X; ).

o Takeaway: If X' is compact, Hy is the eigenspace of Ty. i.e.

{p; = V/Aiej}i forms an orthonormal basis of H.

Park (TAMU)

RKHM 12 / 26




Mercer's Theorem Il NIV ERSITY

@ Sketch of the proof.

e The key is to show Ty is a self-adjoint compact operator, and then
apply Spectral Theorem.

o Self-adjointness comes from the positive definiteness of the kernel k.

o Compactness of T, comes from using Arzela-Ascoli on the image of T
on the unit ball of L2(X) (Arzela-Ascoli part is where we use the
compactness of X).

o Once obtain the compactness, we have Spectral Theorem for Ty, and
therefore \je;j(x) = [ k(x,y)ei(y)dy = (k(x,-), &) and

k(x,-):Z(e,, Z)\ ei(x)ei(-)

i

Plugging-in - = y yields the result.
o Convergence of the sum is guaranteed by the eigendecomposition.
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@ One of applications of RKHS theory is to the probability (or general
measure) theory.
e Fix a probability measure P in X.
Fix a kernel k.
The, the following operation p is called a 'kernel mean embedding’.

[

Lk(P) = Ep(o(x)) = / k(-,x)dP(x) € Hy

X

©

This map is well-defined if Epy/k(x, x) < oo (*.- Holder inequality).
(uk(P), f) = Ep(f(x)), i.e. uk(P) is the Riesz representation (measure
version) of P.

o Caution: Depending on k, uk(-) may or may not be injective.

@ Takeaway: Instead of dealing with measures (often a Banach space or
metric space), we can deal with RKHS #, which is easier.
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o Motivating example: Gaussian process
o A stochastic process {Xi}iez C X(R) is called a Gaussian process if for
any Zy C Z, {X;}z, is a d-dimensional multivariate Gaussian
distribution.
o A zero-mean Gaussian process is fully determined if a covariance kernel
k(Xi, X;) = Cov(X;, Xj) is determined (~ A Gaussian distribution is
fully determined with a mean and variance).
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o What if {X;};ez C X(R?), a multivariate Gaussian process?

o Analogous framework would be k(X;, X;) being a covariance matrix.

e k is no longer a R-valued positive definite kernel, but still a symmetric
positive definite operator.

o Can we extend the concept of RKHS for the case when k is an
operator-valued kernel?

e RKHM is a fairly new concept to generalize RKHS to this kind of
kernels ([Heo08], [HIIT21]).
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@ Reproducing Kernel Hilbert C*-Module (RKHM)
o A: A C*-algebra (not necessarily unital or commutative).
Definition (Hilbert C*-Module)

Q M is called a C*-Module if (M, +) is an Abelien group and (right)
A-Module structure.

Q Amap (-, )pm : M X M — A is called A-valued inner product if it satisfies
the properties of inner product (substituting the positive definiteness
condition by positiveness in A).

© A norm in M is defined by ||u||m = ||{u, u>1/2||A.

M
Q If(M,(-,-)m) is complete w.r.t. || - || a1, then M is called a Hilbert
C*-Module.
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@ RKHM can be constructed as the same way we constructed RKHS
from a kernel.

o Akernel k: X x X — Ais called a A-valued positive definite kernel if
k(x,y) = k(y,x)* and 271 a‘k(xi,xj)ai >4 0forallneN, ajje A
and Xij € X.
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Definition (RKHM)

Let ¢(x) := k(-,x) : X — A% be a feature map. Consider the following
subset of A :

MY = {Z o(xi)ai

i=1

nEN,a;EA,X;GX}

equipped with the A-valued inner product
<Z o(x;) a,,Zqﬁ > = ZZaTk(x,-,yj)bj.
=1 j=1 M2 i

Then, the completion of M% w.r.t. a norm || - || MO 1S called a Reproducing
Kernel Hilbert C*-Module (RKHM).
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@ By construction, again kernel has a reproducing property, i.e.
(f, k(- x))m, = f(x) € A.

@ Also, 1-1 correspondence between a kernel and RKHM also holds.
The proof are exactly same with the 1-1 correspondence of RKHS.
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@ However. other properties of RKHS are not generalized well for
RKHM with A being a general C*-algebra.
e e.g. Orthogonal projection Lemma, Riesz representation theorem.
o If we restrict A being a Von-Neumann algebra, Riesz representation
theorem and Orthogonal projection Lemma are satisfied (this is true
for general W*-modules).

o | tried to find a proof for this but could not...
@ Therefore, we focus on the case when A is a Von-Neumann algebra.
So precisely, we are now analyzing Reproducing Kernel Hilbert
W*-Module.
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@ Here, we consider a set D(X, A): a set of all A-values finite Borel
measures. Then, for all P € D(X,.A), Kernel mean embedding of P
by Mk is

pk(P) := Ep(o(x)) = /X k(-,x)dP(x) € M.

@ The well-definedness is non-trivial in this case, unlike in RKHS.

Theorem (Well-definedness)

If [ cx IIk(- X) M, dIP|(x) < oo, then for all f € My,

(®). an = [ _AR)F)
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@ Sketch of the proof:
@ Define Lp : My — A by Lp(f) = [,

ex dP(x)*f(x).
@ Observe Lp is bounded. i.e.

el < [ IFCOILAIBIO) = | (£ k() adPI)
<l [ kG PI).

< oo by the condition

© Apply Riesz representation theorem for Hilbert W*-Module: There
exists an pu(P) € My such that Lpf = (f, u(P)) pm,, which completes
the proof.
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@ Reproducing Kernel property is useful in many sides (e.g. Quantum
mechanics, Machine Learning, ...).

@ RKHS is the most basic one, and there are many extensions (e.g.
Reproducing Kernel Banach space, ...). Here we focused on RKHM.
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